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Summary 
 

Myosin is an ATP-driven molecular motor that generates force and moves 

along an actin filament. During this complex process, the acto-myosin system goes 

through more than a dozen reaction steps that are performed in distant functional sites 

of the myosin motor domain. These distant functional regions have to communicate 

with each other in order to harmonize their actions, otherwise the energy to be 

converted into mechanical work dissipates as heat. Consequently, the understanding 

of the enzyme cycle of myosin requires both the exploration of the workings of each 

region and the mapping of their communication mechanisms.  

For this purpose we use site-specific fluorescence signals placed in functional 

regions of Dictyostelium myosin II motor domain in combination with transient 

kinetic measurements. With this technique the fluorescent states of the observed 

region can be identified and the energetic of its transitions can be characterized. 

Furthermore, the effects of these transitions on the workings of the other functional 

regions can be investigated. Due to the crystal structures we can assign our fluorescent 

states to known conformations, this approach complements well the static structural 

data. Moreover, the lack of the acto-myosin crystal structure inhibits the identification 

of the actin-induced conformational changes and strengthens the importance of this 

kinetic approach. 

In myosin nucleotide and actin binding is generally antagonistic, but actin 

affinity strongly depends on the type of the bound nucleotide. This phenomenon has 

been known for a while, however the molecular mechanism of the allosteric 

communication between the nucleotide and actin binding sites is still unknown. 

Recent structural studies have identified two states of switch 1 loop in the nucleotide 

binding site, implying a mechanism that transmits the information on the bound 

nucleotide towards the actin binding site. In order to investigate this concept, we 

introduced single tryptophan residues into the switch 1 region of myosin II motor 

domain and studied them by rapid-reaction methods. We identified the two functional 

states of switch 1 and found that the equilibrium constant between these states is 

coupled with the strength of the actin-myosin interaction. We found that the received 

thermodynamic model, describing an equilibrium shift mechanism between the pre-
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existing states of switch 1, is also applicable for the nucleotide-controlled interactions 

of other P-loop NTP-ases and seems to be general. 

Another question is how actin binding induces the force generating lever arm 

movement, the power stroke. According to the currently accepted conformational 

cascade, actin binding opens the nucleotide binding site, resulting in phosphate (Pi) 

release and the inducement of the power stroke. However, muscle fiber experiments 

suggest that the force generating lever arm movement precedes the Pi release. In order 

to solve this contradiction and to achieve a better integration of the mechanical step 

into the biochemical cycle, we conducted a detailed kinetic, mutational, and structural 

investigation of the lever arm movements. Based on the received findings we suggest 

a direct communication path between the actin binding region and the lever arm, 

which induces the power stroke without primary nucleotide binding site opening and 

Pi release. 

In summary, our studies are a significant contribution to the understanding of 

how the nucleotide binding site, the actin binding region, and the lever arm of myosin 

communicate with each other. 
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Összefoglalás (Summary in Hungarian) 

 
A miozin egy ATP-hajtott molekuláris motor, ami erőkifejtésre és az aktin 

filamentum mentén való mozgásra képes. E komplex folyamat végrehajtása közben az 

akto-miozin rendszer több mint egy tucat reakciólépésen halad keresztül, amelyek a 

miozin motor domén egymástól távol eső részein mennek végbe. E távoli funkcionális 

részeknek kommunikálniuk kell egymással, hogy összehangolják működésüket, 

különben a mechanikai munkává alakítandó kémiai energia hőveszteséggé alakul. 

Következésképpen, a miozin ATP-áz ciklusának megértése érdekében elengedhetetlen 

minden funkcionális régió működésének felderítése és a köztük lévő kommunikációs 

mechanizmusok feltérképezése. 

 Ennek vizsgálatára mi Dictyostelium miozin II motor domén funkcionális 

részeibe elhelyezett fluoreszcens szenzorokat használunk tranziens kinetikai 

módszerekkel kombinálva. Ezzel a technikával a vizsgálandó régió fluoreszcens 

állapotai azonosíthatóak, és az egymásba való átalakulásuk energetikája jellemezhető. 

Továbbá, ezzel a módszerrel vizsgálható egy funkcionális rész átalakulásának hatása 

más részek működésére. Mivel a kristályszerkezetek segítségével a fluoreszcens 

állapotokat hozzárendelhetjük ismert térszerkezetekhez, ez a megközelítés jól 

kiegészíti a statikus szerkezeti adatokat. Sőt, az akto-miozin kristályszerkezet hiánya 

gátolja az aktin kötés okozta térszerkezeti átalakulások azonosítását, és növeli a 

kinetikai megközelítés fontosságát. 

 A nukleotid és az aktin kötése a miozinhoz általában véve antagonisztikus, 

viszont az aktin affinitás erősen függ a nukleotid γ-foszfát jelenlététől. Ez a jelenség 

régóta ismert, viszont a nukleotid kötőzseb és az aktin kötőrész közötti kommunikáció 

molekuláris mechanizmusa ezidáig ismeretlen volt. Új szerkezeti eredmények a 

nukleotid kötőzsebet alkotó switch 1 hurok két térszerkezeti állapotát azonosították, 

ezáltal szolgáltatva egy lehetséges mechanizmust a nukleotid γ-foszfát jelenlétének 

érzékelésére, és az információ aktin kötőrégió felé való továbbítására. A modell 

kinetikai vizsgálatához triptofán szenzorokat építettünk be miozin II motor domén 

switch 1 régiójába. Így azonosítottuk a switch 1 hurok két funkcionális állapotát, és 

azt találtuk, hogy a két állapot közötti egyensúlyi állandó kapcsolt az akto-miozin 

interakció erősségével. Továbbá azt találtuk, hogy a kapott termodinamikai modell, 

amely leírja a switch 1 régió állapotai közötti egyensúlyok eltolódását, alkalmazható 
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más p-hurok NTP-ázok nukleotid kontrolált fehérje interakcióira, és általánosnak 

tűnik.  

 Továbbá azt is vizsgáltunk, hogy hogyan indukálja az aktin a miozin 

erőkifejtési lépését. A jelenleg elfogadott térszerkezet-változás kaszkád alapján az 

aktin kötés indukálja a nukleotid kötőzseb nyílását, ami viszont a foszfát 

felszabadulást és az erőgenerálási lépést indukálja. Ezzel szemben, izomrostban 

végzett és egyedi molekula kísérletek azt mutatják, hogy az erőgenerálási lépés 

megelőzi a foszfát felszabadulást. Az ellentmondás feloldásához és a mechanikai 

lépés biokémiai ciklusba való jobb integrálásához, az erőkar mozgásainak mélyreható 

kinetikai, mutációs és szerkezeti vizsgálatait végeztük el. A kapott eredmények 

alapján azt állítjuk, hogy az aktin kötő rész egy direkt kommunikációs útvonalon 

keresztül indukálja az erőgenerálást, elkerülve az elsődleges nukleotid kötőzseb 

nyílást és foszfát felszabadulást. 

Összességében elmondhatjuk, hogy e munka jelentősen hozzájárul a nukleotid 

kötőzseb, az aktin kötőrégió és az erőkar közötti kommunikáció megértéséhez.              
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Review of Literature 

 

The myosin 
 

Myosins are molecular motors that move along actin filaments by converting 

ATP-stored chemical energy into mechanical work. They were first discovered in 

muscle fiber ref (5), however it was later revealed that every eukaryote cell expresses 

myosins. Cytoplasmic transport processes, cell movements, cytokinesis, membrane 

trafficking, and signal transduction are some examples from the repertoire of the 

myosin-driven cell functions (3, 61). The great variability among myosin genes allows 

their divers functions. The human genome for example, contains over 40 different 

active myosin genes. In spite of this great variability, the chemo-mechanical 

transduction, the mechanism that converts the ATP-stored energy into mechanical 

work, seems to be conserved among myosin families.  

The conservation of the chemo-mechanical transduction is due to the fact that 

all myosin isoforms contain very similar N-terminal motor domains. Figure 1 shows 

the structure of conventional myosin molecules (myosin II 1), such as striated muscle 

or smooth muscle myosins. 

  
 

 

 
Figure 1. The homodimer myosin II molecule with indication to its proteolytic fragments 
(84). The head of the myosin (subfragment 1, S1) consists of the catalytically active N-
terminal motor domain and a light chain binding regulatory domain. The long coiled-coil 
tail serves for dimerization and myosin filament formation. S1 together with S2 create the 
heavy meromyosin (HMM), while the C-terminal fragment is the low meromyosin 
(LMM) (23, 84). 
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Figure 2. Crystal structure of scallop myosin II S1 with the 
light chains (purple and yellow) (Protein Data Bank code 1KK7). 

_________________ 
1 Myosin superfamily contains 18 classes marked with roman numerals.  

The myosin 

head consists of the 

N-terminal motor 

domain and the 

regulatory domain 

(Figure 2). The 

motor domain is 

responsible for the 

catalysis of ATP 

hydrolysis, for 

cyclic interaction 

with actin, and for 

force generation. 

Consequently, those 

restricted forms of myosin which contain just the myosin head (Subfragment 1, S1) or 

the motor domain show complete motile functions making them successful objects of 

experimental investigations aiming at the understanding of the motor function (51). 

The regulatory domain is the lever arm that amplifies movement. All myosin II 

molecules contain a long C-terminal coiled-coil tail domain after the myosin head, 

serving for dimerization and filament formation. Other myosin isoforms contain other 

tail domains, such as cargo binding domain, depending on their function. 

 We use Dictyostelium myosin II motor domain for our investigations because 

it shows high similarity to skeletal and smooth muscle myosins, it can be expressed in 

high quantity in Dictyostelium recombinant expression system (59), and its globular 

structure allows it to crystallize (17).  

  

The working models of the acto-myosin system 
 

The 1942 discovery that muscle contraction is based on the interaction of two 

proteins, actin and myosin, can be tied to the Hungarian Nobel Laureate’s name, 

Albert Szent-Györgyi (5). However, it took further thirty years for the principles of 
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Figure 3. The classic model of the myosin 
enzyme cycle proposed by Lymn and Taylor 
(ref). ATP binding to the myosin cross-bridge 
dissociates from the acto-myosin complex. Then 
in the detached state the myosin cross-bridge 
goes through a conformational change, of which 
the reversal movement after rebinding to actin 
causes displacement along the actin filament.   

the myosin enzyme cycle to be 

explored (84). Figure 3 shows the 

Lymn-Taylor model, which 

represents a four-step enzyme cycle 

for the acto-myosin system (54). 

According to this model, in rigor 

state (state 1) the myosin cross 

bridge carrying the myosin head 

interacts strongly with the actin 

filament in the absence of 

nucleotide. The first step is the 

MgATP binding into the nucleotide 

binding site of myosin, which 

induces allosterically the acto-

myosin dissociation. In step 2 the 

myosin cross bridge undergoes a 

large conformational change with 

the priming of the myosin for force 

generation and MgATP hydrolysis. 

Then actin binds back to myosin in 

step 3 when ATP has already been 

hydrolyzed and MgADP.Pi is 

bound into the nucleotide binding pocket. The actin re-attachment activates the 

enzyme cycle of myosin, leading to a rapid hydrolytic product release and the 

reversed conformational change of the cross bridge (step 4). In spite of the fact that 

the Lymn-Taylor model does not contain some newly discovered intermediates, the 

essential four steps are still valid. 

Also in the seventies Clive R. Bagshaw during his PhD work and David 

Trentham developed a kinetic model for the enzyme cycle of the myosin in the 

absence of actin that is still valid as well (Scheme 1) (2). By using intrinsic 

fluorescence of skeletal myosin, they found that the nucleotide binds to myosin in two 

steps corresponding to an induced fit binding mechanism (Step 1 and 2). This step is 

analogous with the first step of the Lymn-Taylor model in the presence of actin. They 

found that the MgATP binding is almost irreversible however, the affinity for the  
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Scheme 1. Bagshaw-Trentham scheme, representing the   
myosin enzyme cycle in the absence of actin.  

 

hydrolytic products is 

not so strong (Kd 

MgADP=1-100 μM, Kd 

Pi=10-50 mM). This 

asymmetry of the 

cycle allows the great 

free energy change of 

the MgATP binding 

needed to drive 

forward the enzyme cycle. The further significance of this finding is that ATP 

hydrolysis energy for the enzyme is not directly supplied by the breakage of the high-

energy phosphate anhydride bond. The next conformational change observed by the 

intrinsic tryptophan fluorescence change was supposed to be coupled to the priming of 

the cross bridge and the hydrolysis step of myosin (step 3 in Bagshaw-Trentham 

scheme and step 2 of the Lymn-Taylor). In the next steps the reversed conformational 

change of the cross bridge (step 4) allows Pi release (step 5) and MgADP release (step 

6 and 7).  

The lack of the high resolution 

structures inhibited the identification of 

the force-generating parts and it was 

believed that the change in the 

orientation of the myosin cross bridge 

is what provokes the force (swinging 

cross bridge theory (38), see Figure 3). 

However, such orientation change 

could not be detected. Furthermore, the 

low resolution structures suggested that 

the conformational change leading to 

the power stroke happens distal to the 

actin binding sites. 20 years later the 

atomic structures of myosin provided 

structural insight into the cross bridge. 

 
Figure 4. The swinging lever arm model. 
The crystal structures of myosin S1 show 
that the force generation is due to a swing of 
the lever arm formed by the regulatory 
domain from its primed or up conformation 
to its down position (20). 
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The first atomic structures of the myosin head led to the swinging lever arm 

model (32, 70, 75) (Figure 4). These structures showed that the head consists of the 

catalytically active motor domain and the regulatory domain, which was the moving 

part of the myosin cross bridge. The regulatory domain forms the lever arm. This has 

two positions: a primed or “up” and a “down” position. The lever arm swing starting 

from the primed or up position and going to the down is the force generating step 

(step 4 in Lymn-Taylor), the power stroke that results in the displacement of the 

myosin motor domain along the actin filament. This model allows displacement 

without the orientation change of the whole motor domain in relation to the actin 

filament (20). 

 

Functional regions of the myosin motor domain  
 

The core region of myosin is a seven-stranded β-sheet, which is surrounded 

with loops and helixes that connect the strands to each other along the polypeptide 

chain. The core β-sheet is an evolutionary conserved platform for P-loop NTP-ases 

(52) and comparative protein evolution results reveal that this kind of structure is the 

most “successful” protein structure in general (7).  Figure 5 shows the motor domain, 

indicating its four subdomains in different colors 2.  

 The lower and the upper 50 kDa subdomains (colored in gray and red 

respectively, amino acid sequence according to Dictyostelium myosin II numbering of 

the lower 50 kDa: 478-614 and the upper 50 kDa: 207-477) form an extensive actin 

binding surface in which several surface loops of the 50 kDa subdomains take part. 

The cognition of the exact actin binding surface is based on mutational analyses (18, 

28) and on rigid docking of actin and myosin structures fitted into electron 

microscopic map of the acto-myosin complex (Figure 6) (36, 68). The two 50 kDa 

subdomains are divided by a large cleft called the actin binding cleft, so the two 

subdomains can move relative to each other. Actually, there are two known 

conformations. The actin binding cleft can be closed due to a rotation of the upper 50 

kDa subdomain toward the lower 50 kDa subdomain (9, 33, 36, 71)  

_______________________ 
2 The subdomain nomenclature is based on limited proteolysis carried out by Prof. Miklós 
Bálint and his co-workers (4). 
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Figure 5. A: functional regions of the myosin motor domain. 
The lower (gray) and the upper (red) 50kDa subdomains form the 
actin binding region and they are separated by the actin binding 
cleft. Between the upper 50kDa and 25kDa subdomains there is 
the nucleotide binding site. The 20kDa subdomain forms the C-
terminal converter region that carries the lever arm. B: The 
nucleotide binding site is formed by the conserved P-loop and by 
the γ-phosphate sensors switch 1 and switch 2 loops. 

This movement results in strong acto-myosin interaction, such as in the rigor state 

(nucleotide absence) (~0.05 μM).When the cleft is opened, the actin affinity decreases 

with about three orders of magnitude (50 μM).  

The second 

functional region of 

the motor domain is 

the nucleotide 

binding pocket 

situated between the 

upper 50 kDa and 

the 25 kDa 

subdomains (green, 

1-206).  Three 

functionally 

important loops 

form the binding 

site: the P-loop 

(magenta, 179-186), 

switch 1 (yellow, 

233-240), and 

switch 2 (cian, 454-

459). The P-loop is 

an evolutionary 

conserved structure, 

which enables the 

protein to bind the 

nucleotide. It is a 

characteristic of all 

P-loop NTP-ases (52). While the role of P-loop is restricted to the binding, switch 1 

and switch 2 have two conformations that enable them to sense the γ-phosphate of 

ATP as real switches. Their switch functions control other functional regions in 

myosin. While switch 1 seems to influence the actin binding region, switch 2 

communicates with the lever arm. Since a great part of my work was to investigate the 
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workings of these regions, a more detailed introduction is presented in Chapter 1 and 

2. 

The third functional region is the converter/lever arm region. The lever arm 

belongs to the regulatory domain, while the converter to the C-terminal 20 kDa 

subdomain of the motor domain 

(blue, 615-761), which carries 

the lever arm. The converter 

domain has many interactions 

with the lower 50 kDa 

subdomain, especially with the 

relay region (relay helix and 

relay loop). The relay helix 

(465-498) transmits the 

conformational changes from 

the nucleotide binding site to 

the converter region. This 

module (relay/converter/lever arm region) also has two states, the primed or “up” and 

the down lever arm states. The lever arm swing between these two states results in the 

displacement of the motor domain along the actin filament (32). The role of the α-

helical lever arm is to amplify the rotation of the converter domain to a bigger 

movement. Thus the 5 Å displacement of switch 2 loop is converter to a 10 nm 

movement of the end of the lever arm. 

 The above mentioned conformational transitions, such as the actin binding 

cleft closure and lever arm rotation can be described most fittingly as rigid subdomain 

movements which are driven by the conformational changes of small hinge regions, 

such as switch 1 and 2 that connect the subdomains to each other (13). Thus, small 

changes in these hinge regions can be amplified to large subdomain movements. 

However, we will see that this is a very reductionist approach. 

 

Communication between functional regions 
 

The previously presented functional regions, responsible for nucleotide 

binding, sensing and hydrolysis, actin binding and movement amplification, have to 

 
 
Figure 6. The actin and rigor-like myosin S1 crystal 
structures fitted into the cryo-electron microscopic 
envelope of the acto-myosin complex (36).
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cooperate with each other in order to harmonize their actions, otherwise the energy to 

be converted to work dissipates as heat. The question arises how this cooperation can 

be imagined? From a mechanical point of view, communication between two regions 

is when the conformational change of one site alters that of another through their 

interacting surfaces. However, on the molecular level where heat movement makes 

the whole protein a very dynamic system, things can work differently. 

The potential conformational space of each functional region can be described 

with a hypothetical energy landscape in which funnel-like local energy minimums are 

the stable macroscopic 

conformations (Figure 7). According 

to the dynamic energy landscape 

model, the shape of the energy 

landscape depends strongly on the 

surroundings of the region (50). 

Thus, communication between two 

regions could be the process when 

the alteration of one region changes 

the energy landscape of another, 

leading to the appearance of new 

stable conformations or re-

distribution between pre-existing 

local energy minimum conformations 
3. Myosin has several communicating 

functional regions however, the 

situation is simplified by the fact that 

they always have only two functional states, as it was presented in the previous 

section. Switch 1 and switch 2 are supposed to be opened and closed just like the actin 

binding cleft and the converter/lever arm region can be in up and down positions 4. 

___________________ 
3 The difference between the two cases is analog with the difference between the induced fit 
substrate binding and the population-shift model (48, 64).  
4 Interestingly, the working of electronic circuits is also based on the binary system. In such a 
system each element of the whole set contains only two values, “yes” and “no”, “1” and “0”, 
or “on” and “off”. However, the transition from one state to the other is very different on the 
molecular level in a protein and between macroscopic states of an electronic element. 
  

 
 
Figure 7. Dynamic energy landscape of a 
conformational change. A transition of a 
functional region is able to change the energy 
landscape of another functional region with 
which it communicates. The sets of the red and 
green spots represent the populated states of 
the influenced functional region before and 
after the transition of the influencing region. 
This energy landscape transition represents an 
equilibrium shift between the two states of the 
influenced region. 
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The transitions between these states, which are driven by ATP binding, hydrolysis and 

actin binding, have to be well synchronized in order to achieve displacement along the 

actin filament. According to this, each step of the Lymn-Tylor model supposes at least 

one communication pathway between functional regions. The first step, when ATP 

binding dissociates the acto-myosin complex, requires communication between the 

nucleotide binding site and the actin binding region. A similar path toward the lever 

arm is required when ATP induces lever arm movement in step 2. Furthermore, in 

step 3, actin rebinding has to be harmonized with the events of the lever arm and the 

nucleotide binding site, in order for actin to bind back to a myosin having primed 

lever arm and ADP.Pi in its binding pocket. Otherwise actin rebinding leads to a futile 

cycle. Finally, in step 4 the actin binding region has to induce the lever arm movement 

and the release of the hydrolytic products from the nucleotide binding pocket, which 

also supposes communication toward the nucleotide binding site and the lever arm.  

The two states of each site are in equilibrium in every condition regardless of 

how populated they are and can be described as a complex network (Scheme 2 as in 

(91)). 

 
The productive enzyme cycle of myosin is the main reaction flux in this network 

(indicated by gray), which is determined by the energetic parameters of these 

equilibriums. Thus, in order to understand the enzyme cycle of myosin, we have to 

characterize all equilibriums between the two functional states of all functional 

 
Scheme 2. Possible reaction paths of the acto-myosin system. O and C indicate the open 
and closed conformations of switch 1 and switch 2 in this order. Switch 1 states are 
supposed to be coupled with the strength of the acto-myosin interaction, while switch 2 
states are coupled with lever arm movement and hydrolysis. The main reaction path (gray) 
is the actin activated ATP-ase cycle of myosin. The question arises, how the functional 
regions are harmonized to perform the efficient reaction path, resulting in movement, 
dominantly.  
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regions in every conditions (presence of different nucleotides and actin) and we have 

to understand which region influences which equilibrium step and how.  

The next four chapters are assigned to the four steps of the Lymn-Tyalor 

model. I will present our contribution to the understanding of each step with a special 

emphasis on the inter-regional communication. 
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Chapter 1 

Step 1 of the Lymn-Tyalor model – Communication between the 
nucleotide binding site and the actin binding region 
 

Introduction 
 

Nucleotide dependent interaction of the acto-myosin complex 

 
 In 1942 the Hungarian Nobel Laureate, Albert Szent-Györgyi brought forth the 

idea that muscle contraction is based on the ATP-controlled interaction of two 

proteins. They found that myosin can be extracted from muscle in two different forms. 

They got a less and a more viscous myosin extract, depending on whether they 

prepared it from the rabbit immediately or 24 hours after the animal died (5). When 

they gave ATP to both extracts their viscosity fell to a similar value. They supposed 

the presence of a substance that detaches from myosin due to MgATP binding. Later 

they isolated this substance and named it actin, the protein that “activates” myosin. 

Today it is generally accepted that the energy stored in nucleoside triphosphates is 

used for the operation of dynamic protein networks, however this experiment was 

perhaps the first observation of a nucleotide dependent protein interaction. 

In the acto-myosin system the nucleotide and actin binding are antagonistic, a 

general characteristic of myosins although the actual dissociation constant of the acto-

myosin complex depends on the type of the nucleotide bound to myosin. The free 

energy change resulted from the MgATP-induced conformational change produces 

enough energy for the endergonic actin dissociation, however that of the MgADP 

binding does not. Consequently, actin and myosin interact weakly in the presence of 

MgATP or MgADP.Pi, but more strongly in the presence of MgADP (18), implying 

the presence of a γ-phosphate sensor in the nucleotide binding site. Furthermore, not 

just the nucleotide weakens actin affinity, but actin also weakens the nucleotide 

affinity (during the fourth step of the Lymn-Tyalor model actin accelerates the release 

of the hydrolytic products). These phenomena suppose a bidirectional communication 

between the nucleotide and actin binding sites, however its mechanism has remained 

hidden until recently.  
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It was recently pointed out that the actin-binding cleft of myosin II is closed in 

the strongly bound rigor complex based on the docking of myosin crystal structures 

into electron-microscopic envelops of the rigor acto-myosin complex  (Figure 6) (33). 

Kinetic investigations prove that this cleft closure is induced by the actin binding 

process (9). Furthermore, it was proposed that in the apo atomic structures of myosin 

II (PDB:1q5g) and V (1OE9) the closure of the actin-binding cleft opens switch 1 

loop in the nucleotide binding site (13, 71), explaining the allosteric communication 

between the actin binding region and the nucleotide pocket (Figure 

8A).

 These structural data gave validity to the assumption that the open-closed transition 

of switch 1 upon ATP binding is also coupled with the closed-open transition of the 

actin binding cleft, supposing the bidirectionality of the mechanism. This structural 

explanation for the antagonistic relationship of actin and nucleotide binding remained 

hidden for a long time since all previous structures contain switch 1 in the same 

closed conformation, regardless of the fact whether the bound nucleotide is MgATP 

or MgADP (26). Thus, only the new apo structures suggested that switch 1 has two 

different conformations (Figure 8B). In the strong actin binding states (in nucleotide 

Figure 8. A: Structural data revealed that the 
open-closed transition of switch 1 is coupled with the 
closed-open transition of the actin binding cleft and 
vice versa, explaining the antagonistic relationship of 
actin and nucleotide binding B: The open 
conformation of the nucleotide binding site with open 
switch 1 and switch 2 in the absence of nucleotide. 
C: The ATP analogue ADP.BeFx bound nucleotide 
binding site with closed switch 1 and switch 2. 
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absence, MgADP-bound) switch 1 can be opened if actin binds to the myosin, while 

in the weak binding states (MgATP, MgADP.Pi) it cannot.  

However, the action of switch 1 and its movements has to be explored in 

solution in order to prove this structural assumption. The question arises, are there 

really two states of switch 1? If yes, what is the equilibrium constant between the two 

states in different nucleotide- and actin-bound states and how do the nucleotide and 

actin affinities depend on them?  

 

Nucleotide dependent interaction of other P-loop NTP-ases 
 

The literature shows that many P-loop NTP-ases have nucleotide dependent 

protein interactions (Figure 9). For example, the heterotrimeric G-proteins, the 

intracellular signaling partners of the GPCRs (G-protein-coupled receptors), have 

three subunits (GαGβγ), which interact strongly when MgGDP (guanosine 

diphosphate) binds to the Gα subunit, but more weakly when MgGTP (guanosine 

triphosphate) does (66). The elongation-factor-Tu, which brings the aminoacylated t-

RNA to the ribosome binds to the ribosome strongly in the MgGTP-bound form, but 

more weakly when MgGDP binds to it (87). The nucleotide dependent interaction of 

Figure 9. Nucleotide dependent interactions of other P-loop NTP-ases. The nucleotide 
binding sites of these proteins sense the presence of the γ-phosphate by conserved switch 
regions, which influence their affinity to the partner protein. The question arises, does the 
control mechanism remains conserved during their divergent evolution?         
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the small G-protein Ras with Raf-kinase is the most studied among the listed 

interactions because these proteins are involved in the regulation of many signal 

pathways that control cell proliferation. They are found to be the most frequent 

oncogenes in human tumors (8). The affinity of Ras for its effector protein Raf is high 

when MgGTP is bound to Ras and low in the case of MgGDP (25).   

Interestingly, not just myosin but the homologue switch 1 loops of small G-

proteins and kinesin are also thought to be the regions responsible for the antagonistic 

relationship between the nucleotide binding pocket and the binding region of a partner 

protein (65, 78). Hence, the mechanisms of action of switch 1 loops in these proteins 

need to be compared with those of the myosin to explore the potential similarities. It is 

an interesting question, weather such a control mechanism is able to be conserved 

despite the fact that these proteins have been bearing a long-standing evolutionary 

transformation since the deviation from their last common ancestor (52).   

 

Aims 
 

Our concept was that the complete understanding of switch 1 action requires 

both kinetic and structural information. In order to investigate in solution the states 

and transitions of switch 1 by using switch 1 specific intrinsic fluorescent signals, 

tryptophan residues were engineered into the switch 1 loop of Dictyostelium myosin II 

motor domain (M761) null tryptophan construct by replacing Phe-239 (MW239+) or 

Phe-242 (MW242+). Due to the similar side chains of tryptophan and phenylalanine, the 

most minimal structural perturbation might be caused by these substitutions. Phe-239 

is in a central position, because it is very close to the R238-E459 salt bridge which 

connects switch 1 to switch 2. Phe-242 is located at the C-terminal end of switch 1, at 

the beginning of the β-sheet strand that extends from the switch 1 loop. We expected 

that these residues provide information on switch 1 states in different nucleotide and 

actin-bound forms when investigated with steady-state and transient kinetic 

fluorescence experiments.  
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Results 
 

Steady-state fluorescence of MW239+ and MW242+  

 
First we tested weather these tryptophans are able to distinguish between 

MgADP and MgATP, as it is required from a γ-phosphate sensor switch. Thus, we 

measured the fluorescence emission spectra of MW239+ and MW242+ in different 

nucleotide-bound forms. We found that nucleotides caused a large fluorescence 

quench in both constructs. All of the nucleotides have the same effect on MW242+ 

fluorescence by causing 20% fluorescence quench (Figure 10B). However, the MW239+ 

construct bears a 37% quench upon MgATP binding, while MgADP causes a 20% 

quench at 20 °C. (Figure 10A). Furthermore, the studied nucleotide analogues 

(AMP.PNP, ATPγS, ADPBeFx, ADPVi)5, which occupy the γ-phosphate site in the 

nucleotide-binding pocket, show the same spectra as MgATP with MW239+ indicating 

that the fluorescence of W239 is not sensitive to the open-closed transition of switch 2 

(since the equilibrium constant of the open-closed transition of switch 2 is different in 

these nucleotides (56). Furthermore, in the absence of Mg2+ the MW239+.ADP complex 

has different fluorescence than in the presence of Mg2+. However, the other  

_____________________ 
5 The AMP.PNP (adenylyl-imidodiphosphate) having a N containing anhydride bound 
between the β-γ Pi groups and the ATPγS (adenosine 5′-O-(3-thio)triphosphate) having thio-
group instead of a γ-Pi oxo-group are ATP analogues. They are not or slowly hydrolysable. 
The BeFx is also thought to be an ATP analogue, however its fluoride stoichiometry is in 
equilibrium between the 3 and 4 fluoride. ADPVi  is an ADP.Pi analogue. 

 
Figure 10. Fluorescence emission spectra of 3 μM MW239+ (A) and MW242+ (B) in the 
absence (—) and presence of 0.5 mM MgADP (◦◦◦) or 0.5 mM MgATP (•••) at 20 °C. 
Tryptophan was excited at 297 nm. MW239+ is able to distinguish between MgATP and 
MgADP.
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Figure 11. The observed rate constants of 
MgATP binding to MW239+ at 20 °C plotted 
against MgATP concentration. 3 μM motor 
protein was mixed with different MgATP 
concentrations in stopped-flow, while tryptophan 
fluorescence was detected at 340 nm. Kinetic 
data are presented in Table 1. 

nucleotide-bound forms do not show such difference.  

In summary, MW239+ senses the difference between MgATP and MgADP and 

the large fluorescence changes of MW239+ and MW242+ upon adding nucleotides create 

good signals for the investigation of switch 1 movements. 

 

Nucleotide binding to MW239+ and MW242+  
 

We characterized nucleotide binding kinetics to the single tryptophan 

constructs. Tryptophan fluorescence was followed during the reaction with 

nucleotides by using a stopped-flow device. Single exponential functions can be fitted 

to the MgATP or MgADP binding transients of MW239+ under pseudo first-order 

conditions at 20 °C. The concentration dependences of the observed rate constants 

show that both MgATP and MgADP binding to MW239+ follow two-step-binding 

kinetics, describing an induced-fit mechanism (Figure 11 and Table 1). 

 On the contrary, at lower 

temperatures (12 °C and 5 °C) the 

stopped-flow records of MW239+ 

MgADP binding are markedly 

different. The fast quenching phase 

corresponding to the binding event 

(Table 1) is followed by a slower 

fluorescence enhancement with an 

observed rate kiso switch 1 observed = 55 

s-1 and 32 s-1 at 12 °C, and 5 °C, 

respectively (Figure 12A and B, 

Table 2). This slower phase implies 

the presence of a further 

equilibration step after the nucleotide binding step. This transition was not detected 

with MW242+, since it showed simple two-step-binding kinetics for MgATP and 

MgADP at all temperatures, indicating that this isomerization is a characteristic of the 

middle of switch 1. 
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 Furthermore, the mutations have no dramatic effect on the nucleotide affinity. 

The MgADP affinity of MW239+ is practically unchanged because both the second 

order binding constant (3.9x106 M-1s-1 for MW239+, 1.4x106 M-1s-1) and dissociation 

constant were slightly faster than for the wild type (58) 6. 

The isomerization step of switch 1 loop in the myosin-MgADP complex  
 

Since the stopped-flow records of MgADP binding to MW239+ reveal the 

existence of a first order equilibrium step, we measured the steady-state fluorescence 

of MW239+.MgADP on different temperatures to detect the temperature dependence of 

the equilibrium constant. Figure 13A shows the temperature dependence of the 

steady-state fluorescence of MW239+ measured in the absence and presence of different 

nucleotides. The temperature dependence of the apo and MgATP forms’ fluorescence 

are parallel 7, but that of the MgADP complex differs from the others above 8 °C.  

______________________ 
6 The second order binding constant or on-rate is the slope of a fitted line to MgADP 
concentration dependence of the observed rates of the binding at low MgADP concentration 
(Figure 11). The dissociation constant or off-rate is the y-intercept of the same function.  
7 The temperature dependence of the fluorescence of the MgAMP.PNP is also parallel with 
the apo and MgATP, however this data is not shown. 
  

Figure 12. MgADP binding to MW239+ at 12°C. A: Stopped-flow records of the 
fluorescence signals for the reaction of 2 μM MW239+ with different concentration 
MgADP. The quench phase is MgADP binding, which is followed by a fluorescence 
increase. The amplitude loss becomes significant at higher ADP concentrations. B: The 
MgADP concentration dependence of the observed rate of the fitted exponential functions 
to the fluorescence change. The maximum rate constant of ligand binding (■) is estimated 
to be between 1000 and 1500 s-1. At high MgADP concentration, the fluorescence 
enhancement separates from the quenching phase, showing a maximal observed rate 55 s-1 
at 12 °C. This fluorescence enhancement corresponds to the equilibration between the two 
ADP states.  
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However, at lower temperatures it has the same fluorescence as the MgATP 

form. This is in sync with the observation that the fluorescence spectrum of 

MW239+.MgADP complex is the same as that of the MgATP form at 5°C. 

These findings also indicate that the MW239+.MgADP complex exists in at least 

two states of equilibrium. The two MgADP states are denoted as †M.ADP and 

*M.ADP for the quenched and the high fluorescent states respectively. The same 

fluorescence level of the low-fluorescent MgADP state (†M) and the MgATP-bound 

form indicates that these states have switch 1 in similar conformation. Because of the 

fractional occupancy of the high fluorescent *M.ADP state at all accessible 

temperatures, its fluorescence intensity cannot be determined from these experiments. 

 In contrast, the temperature dependence of the MW242+.MgADP-bound form is 

identical to the other forms (apo, MgATP, MgAMP.PNP) hence, only one MgADP 

state can be detected (Figure 13B). 

The presence of the temperature dependent equilibrium of the MW239+.MgADP 

complex was also confirmed with temperature-jump experiments. Figure 14 shows the 

temperature-jump records of MW239+ in the presence of saturating MgADP or 

MgAMP.PNP. In the presence of MgADP a 4.7 % fluorescence increase can be 

observed with an observed rate 70 s-1 induced by a 6 °C temperature-jump to 20 °C. 

 In the other states (apo, rigor, MgAMP.PNP-bound and Mg2+-free ADP 

states) no fluorescence change was detected. Interestingly, in the presence of actin and 

Figure 13. Temperature dependence of MW239+ (A) and MW242+ (B) fluorescence in the 
absence of nucleotide (■) and in the presence of MgATP (1mM) (▲) and MgADP (1mM) 
(●). The temperature dependence of the Trp-239 fluorescence in the MgADP bound form 
reveals the presence of a temperature dependent equilibrium. At low temperature the 
fluorescence intensities in the presence of MgATP were slightly higher than in MgADP 
however, in ATP turnover experiments a fluorescence intensity change cannot be detected 
after ATP consumption. MW242+.MgADP does not show such an equilibrium. 
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MgADP the acto-

MW239+.MgADP complex is 

also locked into a single state 

because no transition was 

detected (Figure 14). Pressure-

jump experiments done by our 

collaborators, Professor Mike 

A. Geeves and David S. 

Pearson (University of Kent), 

confirmed these findings (41). 

Based on these experiments, we 

can state that there are at least 

two MgADP states in 

equilibrium. In contrast, in the 

absence of Mg2+ and in the presence of actin or γ-phosphate site occupation Trp-239 

shows only a single fluorescent state. Note that the two MgADP states are marked 

with similar nomenclature as the pre- and post-recovery states in Chapter 2 i.e. M† and 

M* (58) but here the signs corresponding to switch 1 states are written before M i.e. 

the †M and * M 

Mg2+ binding to MW239+.ADP allowed us to determine the equilibrium constant 
between the myosin-MgADP states 

 
We found that removing Mg2+ from MW239+ caused a significant fluorescence 

change only in the presence of ADP and absence of actin. In the absence of Mg2+ the 

addition of ADP to MW239+ causes a 45% quench in tryptophan fluorescence although 

the fluorescence quench was just 20% in the presence of Mg2+. This Mg2+-free 

MW239+ADP complex is a single fluorescent state because neither temperature nor 

pressure perturbed the fluorescence (see previous section). Stopped-flow 

measurements showed that the (Mg2+-free) ADP affinity of myosin is similar to that of 

MgADP however, the binding and dissociation in the absence of Mg2+ is faster (see 

kinetic data in Table 1). This fluorescent state (††M) is different from the †M.ATP 

state because the emission maximum is 9 nm red shifted (349 nm) compared to that of 

the †M state (340 nm).  

 
Figure 14. Temperature-jump perturbation 
experiment of MW239+ in the presence of MgADP, 
actin, and MgADP, AMP.PNP at 20°C. Trp-239 
fluorescence was followed after a 6°C temperature 
jump. These experiments show that acto-
MW239+MgADP is locked into a single state. 
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Figure 15. Stopped-flow records of Mg2+ 
dissociation and binding of MW239+.MgADP 
complex at 11°C. Mg-off: 2 μM  MW239+, 1 mM 
ADP was mixed with 5 mM EDTA, 1 mM ADP. 
The fluorescence quench shows two phases with a 
rate constant 89 s-1 and 18 s-1. Mg-on: 2 μM  
MW239+, 1 mM ADP, 3 mM EDTA was mixed with 
10 mM MgCl2, 1mM ADP. The observed rate of 
the increasing and quenching phase is 120 s-1 and 
20 s-1 respectively. These records are consistent 
with the concept that the main flux of Mg2+-
binding and dissociation occurs through the high 
fluorescence MgADP-myosin state and the second 
phases of the binding and dissociation reactions 
correspond to the equilibration of the two MgADP 
states. This mechanism (Scheme 3) was confirmed 
by modeling with Berkeley Madonna software 
(Table 1). 

Mg2+ dissociation from 

MW239+.MgADP complex was 

monitored by mixing it with 

EDTA. The observed fluorescent 

quench has two phases (kobs = 89 

s-1 and 18 s-1 at 11 oC) (Figure 

15). When Mg2+ (5mM) was 

mixed with MW239+ADP in a 

stopped-flow in order to follow 

Mg2+ binding the fluorescence 

profile of the record was 

dramatically different from what 

was expected from the emission 

spectra. Mg2+ binding is 

accompanied by a rapid 

enhancement phase that is 

followed by a slow quench phase 

(kobs=120 s-1 and 20 s-1, 

respectively at 11 °C) (Figure 

15). This fluorescent profile can 

be explained if Mg2+ binding occurs predominantly to the high fluorescent *M.ADP 

state and the slow phase represents the equilibration between *M.MgADP and 
†M.MgADP states (Scheme 3). This concept is also supported by the fact that the rate 

of the second phase of the Mg2+ dissociation is equal with the rate of the second phase 

of the Mg2+ binding trace (equilibration between *M.MgADP and †M.MgADP states). 

Consequently, Mg2+ dissociation also happens predominantly through the 

*M.MgADP state. The observed rates of the quenching phase at different 

temperatures were in line with the observed rate of the same equilibration detected by 

the temperature-jump, the pressure-jump, and the MgADP binding stopped-flow 

experiments. However, here the equilibration is a bit slower. 
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†M.MgADP *M.MgADP

† † M.ADP
Mg2+ Mg2+

kiso,forward

kiso,reverse

†M.MgADP *M.MgADP

† † M.ADP
Mg2+ Mg2+

kiso,forward

kiso,reverse

Scheme 3. Mechanism of Mg2+ binding to the 
MW239+.ADP complex. Kiso refers to the 
isomerisation of switch1 

  Since the fast phase of Mg2+ 

binding is significantly faster than 

the subsequent equilibration step 

accompanied by the fluorescence 

quench, at the end of the 

fluorescent enhancement the *M 

state is almost 100% populated and 

its fluorescence intensity can be 

determined. By using the binding 

mechanism described in Scheme 1, the measured Mg2+ binding stopped-flow records 

at different temperatures were modeled by a global fit method (Berkeley Madonna 

software) and we determined precisely the relative fluorescence intensities of the 

states. Since the relative fluorescence intensities of the Mg2+ free ††M.ADP state and 

the M.MgADP mixture are determined by the starting and end points of these 

stopped-flow records (just like by the fluorescence spectra) their fluorescence 

difference can be used to convert the fluorescence intensities of the stopped-flow 

records to those of the fluorescence spectra. Thus, the fluorescence of the *M state 

can be compared to that of the †M and apo states. Hence, if the fluorescence intensity 

of the apo state is taken as unity the relative intensities of *M and †M states are 1.13 

and 0.63, respectively.  Since we know the fluorescence intensities of the 

MW239+.MgADP mixture at each temperature and the relative fluorescence of the 

*M.MgADP and †M.MgADP states, we can calculate the equilibrium constants of the 

isomerization (Kiso switch 1) between the *M.MgADP and †M.MgADP forms. At 20 ºC 

Kiso switch 1=[*M]/[†M] is 0.7 and the calculated thermodynamic parameters are: 

ΔG0=0.9kJ/mol, ΔH0=44kJ/mol, ΔS0=0.15kJ/mol.K. Below 8 °C the fluorescence 

intensity of the MW239+.MgADP complex reaches the fluorescence of the †M state 

because the lower the temperature the smaller the equilibrium constant of Kiso switch 

1=[*M]/[†M]. 

Based on these findings, a general mechanism for MgADP binding to MW239+ 

(Scheme 4) can be determined. According to this scheme both the †M and *M states 

are able to bind MgADP. However, the fluxes through the two routes may different. 

At low temperature, where the fluorescence of the MgADP-bound form is similar to 

that of the †M.ATP state, the population of the *M.ADP state is very low (Kiso switch 

1<0.1). Furthermore, the MgADP binding stopped-flow record showing a 30% and 
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†M.MgADP *M.MgADP

Mapo

MgADP MgADP

kiso,forward

kiso,reverse

k1on k1off k2onk2off

†M.MgADP *M.MgADP

Mapo

MgADP MgADP

kiso,forward
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†M.MgADP *M.MgADP

Mapo

MgADP MgADP

†M.MgADP *M.MgADP

Mapo

MgADP MgADP
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k1on k1off k2onk2off

 
 
Scheme 4. Mechanism of MgADP binding to 
MW239+. 

fast fluorescent quench (faster than 

kiso switch 1) reveals that only the low 

fluorescent †M.ADP state is formed 

upon binding. This indicates that the 

ADP affinity of the high fluorescent 

state is weaker than that of the low 

fluorescent state at low temperature. 

However, the higher the temperature, 

the smaller the amplitude of the 

fluorescence quench upon MgADP binding. This indicates that MgADP now also 

induces the formation of the *M.ADP state directly. 

  

Actin binding to MW239+ and MW242+ 

 
In the previous sections we 

determined the fluorescent states of 

switch 1 in the absence of actin. 

Another important question is 

whether actin binding induces a 

change in switch 1 conformation as 

implied from structural data (12, 

13). To test this presupposition, 

actin was mixed with MW239+ in 

stopped-flow and the fluorescence 

change of Trp-239 was monitored 

in parallel with the light-scattering 

signal. As a result, a 4.3% increase 

in protein fluorescence was 

observed. Since actin contains four 

tryptophans, this fluorescence 

change corresponds to an 

approximately 15% fluorescence change relative to the fluorescence of Trp-239 if we 

subtract all of the actin fluorescence and light scattering artefact (10), Now the 

Figure 16. Time courses of the reaction of MW239+ 
with actin in the presence (black) and absence (red) 
of MgADP, the reaction of MW239+ with MgADP 
(green), and that of the acto-MW239+ with MgADP 
(blue) at 20°C. The fluorescence intensity of the 
apo MW239+ is represented by the magenta trace. 
Actin fluorescence was subtracted from the records 
if actin was present. The concentration of MW239+ 
and actin was 2 μM, MgADP 1mM. In the record 
of the reaction of MW239+ mixed with 1 mM 
MgADP (green), the fast quenching phase occurred 
in the dead time of the stopped-flow.
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changes can be compared with the records measured in the absence of actin (Figure 

16, red trace). Interestingly, *M has the same fluorescence intensity as the rigor state, 

since the fluorescence of *M was determined to be 13% higher than that of the apo 

state. In contrast, MW242+ shows only 1.5% fluorescence change upon actin binding, 

being the same as with the tryptophan free motor domain construct (10), indicating 

that the fluorescence of MW242+ does not change upon actin binding. These findings 

indicate that the conformation of the switch 1 loop or the environment of Trp-239 

change upon actin binding. 

We also measured the effect of actin binding on Trp-239 fluorescence in the 

presence of MgADP. This stopped-flow record also shows a fluorescence increase, 

but with larger amplitude than in the absence of MgADP (Figure 16, black trace). The 

fluorescence intensity of actin is subtracted from the records, similarly to the previous 

experiment. Thus, Figure 16 shows the actin-induced fluorescence changes of MW239+ 

in the presence and absence of MgADP and it also shows the MgADP-induced 

fluorescence changes in the presence (blue trace) and absence of actin (green trace). 

At 20 °C MgADP binding is so fast as the signal change lost in dead time thus, the 

record shows only the fluorescence intensity of the MW239+.MgADP complex. These 

fluorescence levels reveal that actin binding induces the same fluorescent state 

regardless of the presence of MgADP. Importantly, there was no significant 

fluorescence change when actoMW239+ was mixed with MgADP and the light 

scattering signal shows that actin dissociation is also negligible (Figure 17B).    

Furthermore, we found that the mutation has no dramatic effect on the actin 

affinity of MW239+. In the presence of MgADP it is slightly stronger (0.04 μM) than in 

the case of the wild type construct (0.12 μM) however, in the absence of MgADP the 

actin affinities are similar to each other (0.03 μM). Moreover, actin cannot activate the 

ATP-ase cycle of MW239+. This is due to the fact that F239W mutation reduces the rate 

of the hydrolysis step significantly that becomes the rate limiting step of the basal 

enzyme cycle (data not shown). However, the hydrolysis is not directly coupled with 

the interactions of actin and myosin (10), thus MW239+ is a suitable construct for the 

investigation of the relationship between actin binding and switch 1 movements. 

 



                                                                                  PhD Thesis – Bálint Kintses 

32 

Coupling between switch 1 movement and actin dissociation 

 
We studied the ATP-induced actin dissociation reaction to test the coupling of 

switch 1 movement and actin dissociation (step 1 in the Lymn-Taylor model). Acto-

MW239+ was mixed with MgATP under pseudo first-order conditions. The received 

fluorescence change is a large quench, similar to that observed upon MgATP binding 

in the absence of actin. The light-scattering signal change follows the fluorescence 

quench immediately, showing the acto-myosin dissociation. In contrast, upon mixing 

acto-MW239+ with MgADP neither the fluorescence nor the light scattering signal 

decreased (Figure 17B).  

We also studied the reaction of acto-MW239+ with MgATPγS in stopped-flow 

(Figure 17A). Since MgATPγS induces slower acto-myosin dissociation this ATP 

analogue is a useful substrate for the study of the coupling of actin dissociation and 

switch 1 movement (9). Here the tryptophan fluorescence and light scattering signal 

were also detected in parallel. The tri-phasic fluorescence decrease shows a dominant 

fast phase (kobs,fluor 1 = 68 s-1 relative amplitude 53%) that is missing in the light 

scattering signal, but the two slow phases correspond to the two phases of the light 

scattering change (their relative amplitudes and their rates are the same). The light 

Figure 17. Stopped-flow records of the reaction of acto-MW239+ with ATP analogue 
MgATPγS (A) and MgADP (B). Fluorescence and light scattering signal were followed 
after mixing 2 μM MW239+ with 100 μM nucleotide in stopped-flow at 20°C. The light 
scattering signal, which follows the acto-myosin dissociation, is normalized to the 
fluorescence change. A: in case of MgATPγS, the light scattering signal has two phases 
(kobs,light scatt 1 = 4.2 s-1, kobs,light scatt 2 = 0.11 s-1) however, the fluorescence change has three 
(kobs,fluor 1 = 68 s-1, kobs,fluor 2 = 4.3 s-1, kobs,fluor 3 = 0.10 s-1). During the fastest phase of 
fluorescence change no significant acto-myosin dissociation occurs, indicating that the 
conformational rearrangement of switch 1 precedes actin dissociation. B: MgADP binding 
to the acto-MW239+ does not induce either fluorescence or light scattering signal change. 
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Scheme 5. Thermodynamic box of actin binding and switch 1 
isomerisation in the presence of MgATPγS. 

scattering change is similar to previous measurements of the MgATPγS-induced 

dissociation where pyrene-actin fluorescence was the detected signal (55). The fast 

fluorescence quench in the fluorescence change most likely corresponds to a transient 

equilibration between the *M.MgATPγS and †M.MgATPγS fluorescence states before 

the occurrence of significant actin dissociation. A model describing this mechanism is 

shown in Scheme 5. Since the initial equilibration is much faster than the actin 

dissociation steps, an acto-myosin population with †M switch 1 conformation appears 

transiently. The relative amplitudes of the phases of the fluorescence signal change 

determine the equilibrium constant, KA
iso-MgATPγS= 

[A.*M.MgATPγS]/[A.†M.MgATPγS] = 0.47/0.53 = 0.87. 

 These results carry important indications. The conformational change of 

switch 1 loop can initiate actin dissociation, which is a consequence of the actin 

binding cleft opening (9). However, the MgATPγS induced dissociation shows that 

the two sites do not couple as rigid bodies to each other.    

Summary of the fluorescent states of MW239+ 
 

In summary, in the presence of Mg2+ three fluorescent states can be 

distinguished: †M, *M, and apo (Table 3). The high fluorescent *M is the predominant 

state in the presence of actin either in the presence or absence of MgADP (acto-*M, 

acto-*M.MgADP) and it is populated even in the M.MgADP complex in the absence 

of actin. The low fluorescent †M state is predominant in myosin complexed with 

MgATP or substrate analogues having γ-phosphate and exist in the M.MgADP state.  
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Discussion 
 

Reversible movement of switch 1 loop 
 

Since Albert Szent-Györgyi’s experiments we have known that the strength of 

the acto-myosin interaction depends on the nature of the bound nucleotide (5). While 

the MgADP-bound form results in a strong binding complex, MgATP and MgADP.Pi 

result in weak acto-myosin interaction (18). However, the way how the nucleotide 

determines the actin affinity of myosin is a long-standing question (21). 

Recent structural data show that switch 1 can exist in different conformational 

states (13, 71) and these states are presumed to play a central role in information 

transmission between the nucleotide and the actin binding regions (35). Solution 

experiments are now required to confirm the role of switch 1 and to elucidate its 

action. Therefore, we prepared such Dictyostelium myosin II motor domains that are 

able to produce switch 1 specific fluorescence signals. In two different constructs the 

F239W and F242W mutations were introduced into the switch 1 region, while native 

tryptophans were mutated to phenylalanine residues to reduce background 

fluorescence (58). Fortunately, we found that these fluorophores are really able to 

provide specific signals on the conformational changes of switch 1 upon nucleotide 

and actin binding. Furthermore, the mutations have no significant effect on the acto-

myosin interaction and on nucleotide binding of myosin, thus these constructs are 

suitable objects for the investigation of the antagonistic relationship of actin and 

nucleotide binding in which switch 1 is supposed to have a central role. 

In the presence of Mg2+ three fluorescent states of W239 were identified and a 

fourth state in its absence, which is the Mg2+-free ADP state (Table 3).  In the 

MgADP-bound form two states were distinguished, being in equilibrium. The low 

fluorescent †M.MgADP state is likely to be the same state as the MgATP-bound state. 

The other, high fluorescent *M.MgADP state, is different from the myosin apo state 

because it has a higher fluorescence. Moreover, the fluorescence intensity of this state 

is the same as that of the actin-bound state and actin induces this fluorescent state 

regardless of the presence of MgADP. This entails that actin also induces a structural 

change in switch 1 when it binds to the apo myosin and that the rigor acto-MW239+ 

complex could have the same switch 1 state as acto-MW239+.MgADP ternary complex 

and *M.MgADP state. 
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Dictyostelium myosin II structures with bound nucleotides and nucleotide 

analogues, such as ADP, ATP, ADP.BeFx and ADP.AlF4, show switch 1 in the same, 

closed conformation. With the use of switch 1 specific fluorescent signals we also 

found that switch 1 exists in the same fluorescent state when MgATP or substrate 

analogs having γ-phosphate is bound to the myosin. Furthermore, this state also exists 

in the MgADP-bound form. Consequently, we are able to assign the closed switch 1 

conformation to the low fluorescent †M with high confidence. The observation that 

this †M state has higher affinity to MgADP than the high fluorescent *M state and the 

inhibited Mg2+ exchange of this state also support the finding that †M is the closed 

switch 1 state.  

The significance of the new Dictyostelium apo (rigor-like) structure is that in 

this structure switch 1 is in an open state. Furthermore, the myosin V apo structure 

also has opened switch 1 loop, just like an ADP-bound structure (without Mg2+) 

(PDB: 1W7I) (12). This ADP-bound structure is called weak ADP-bound state 

because the open switch 1 state is thought to have lower ADP affinity. The further 

significance of the apo (rigor-like) structures is that the actin-binding cleft in these 

structures is in closed conformation, which is thought to be a characteristic of the 

strong actin-bound states (35).  

In MW239+ switch 1 is in the *M state when actin is bound strongly to myosin, 

having a closed actin binding cleft (acto-MW239+, acto-MW239+.MgADP). This suggests 

that the *M state can be assigned to the switch 1 open state. However, this is different 

from the apo state, because that has a lower fluorescence than the high fluorescent *M 

state. Consequently, the switch 1 conformation or the environment of Trp-239 in the 

presence of actin is not the same as it is represented by the rigor like apo structures. 

Henceforward, we assign the open switch 1 state to the high fluorescent *M states, 

such as *M.MgADP, acto-*M, acto-*M.MgADP, and not the apo state. 

Consequently, we found that there are two states of switch 1 in physiological 

conditions (in the presence of Mg2+-nucleotide and/or actin): the open state and the 

closed state. Furthermore, between the two states there is a dynamic equilibrium. In 

MgADP-bound state both states are significantly populated. However, when MgATP 

or nucleotide analogues having γ-phosphate group are bound the equilibrium is 

pushed towards the closed switch 1 state. On the contrary, actin, either in the presence 

or absence of MgADP, pushes the equilibrium towards the open switch 1 
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conformation. Hannemann et al. also found an isomerization of the MgADP states in 

myosin V using mant-ADP, which is pushed predominantly to a single state upon 

actin binding (29). However, Rosenfeld et al. did not find this effect with myosin V 

(72). The existence of the two MgADP states of acto-myosin system is a long-

standing question, and provides an explanation for the load-dependent ADP release in 

muscle (14).  

As it was mentioned previously, the structural results reveal that switch 1 

closure opens the actin binding cleft and vice versa, resulting in weak and strong actin 

binding states respectively (35). This serves as an explanation for the antagonistic 

relationship of actin and nucleotide binding. A similar equilibrium found in case of 

switch 1 has been supposed for a long time between the states of the actin binding 

cleft (19). If the acto-myosin interaction is strong, the equilibrium is pushed toward 

the closed actin binding cleft state, such as in nucleotide absence or in the ADP-bound 

form. When the interaction is weak (MgATP- or MgADP.Pi-bound myosin) the 

equilibrium is pushed to the open actin binding cleft state. 

Thermodynamic model of a classical switch mechanism 
  

Based on our experiments, we presuppose that both the open and the closed 

switch 1 conformations exist in solution in all Mg2+-nucleotide and actin-bound 

forms, only the equilibrium constant is different. From this point of view there are 

four different states of myosin in a solution that contains actin, myosin, and a certain 

nucleotide in saturating amount: detached and actin-bound myosin molecules, with 

open and closed switch 1 (Note that actin concentration must be non-saturating). 

Scheme 6 shows the thermodynamic box of the four states. According to this scheme 

the relative concentrations of the four states are determined by the four equilibrium 

constants between the four states. The actin binding equilibriums are not influenced 

by the type of the bound nucleotide but they depend on the actin concentration and on 

the conformation of switch 1. Myosin binds actin strongly when switch 1 is open 

(Kd≈0.1 μM) but weakly when switch 1 is closed (Kd=50 μM) 8. However, the  

___________________ 
8 The affinity of the strong binding form is estimated from the actin affinity of the rigor 
complex. The actin affinity of the weak binding form is based on the KM of the actin activated 
ATP-ase activity (Figure 26). 
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Scheme 6. Thermodynamic boxes of actin binding and switch 1 isomerisation in the 
presence of MgADP or MgATP. 

equilibrium constants between the open and closed switch 1 states depend strongly on 

the bound nucleotide. These equilibrium constants are measured by the use of the 

MW239+ construct: Kiso(MgADP)=oM.ADPMg/cM.ADPMg=0.7 and KA
iso(MgATPγS) 

=AoM.ATPγSMg/AcM.ATPγSMg=0.87, where o and c are the open and closed forms of 

switch 1. 

 The fourth sides of the thermodynamic boxes are determined by the other 

three, consequently KA
iso(MgADP)=AoM.ADPMg/AcM.ADPMg=300 and Kiso(MgATP)= 

oM.ATPMg/ cM.ATPMg=0.017, which are also consistent with the measured data.  

Based on this model, the nucleotide determines the relative concentration of 

the four states and thus, the actual actin affinity through the equilibrium constants 

between the open and closed states of switch 1 as well. According to Scheme 6, in the 

presence of actin and MgADP the predominant state is the actin-bound myosin with 

an open switch 1 (A.oM.ADPMg). This is consistent with the fact that the MgADP-

myosin complex binds actin strongly.  

 

In contrast, in the presence of actin and MgATP the thermodynamic box 

determines the actin detached myosin having a closed switch 1 state (cM.ATPMg) as 

the predominant state. This correlates with the fact that acto-myosin interaction is 

weak in the presence of MgATP or MgADP.Pi. In other words, while MgATP is able 

to close switch 1 even in the actin-bound state, the lack of the γ-phosphate weakens 

the MgADP enough to let actin win in the thermodynamic fight. 

Scheme 6 is also valid if we substitute the equilibrium constants of switch 1 with 

those of the actin binding cleft states in different nucleotides (19). However, the 

MgATPγS induced acto-myosin dissociation experiment in which switch 1 closure is 
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disconnected in time from actin binding cleft opening (Figure 17A) shows that switch 

1 and the actin binding cleft do not move together like two parts of a rigid subdomain. 

Rather, the open-closed equilibrium of switch 1 influences or determines the closed-

open equilibrium of the actin binding region. This is consistent with the hypothesis 

that the alteration of one functional region influences the conformation of the other by 

changing its energy landscape. In case of MgATPγS the small difference compared to 

MgATP perturbs the closure of switch 1, resulting in a slower actin binding cleft 

opening. This could be the consequence of a differently changed energy landscape of 

cleft movement with a higher kinetic barrier.     

 

Nucleotide dependent interaction of P-loop NTP-ases 
 

The minimum requirement for a nucleotide state-dependent interaction is the ability to 

sense the difference between the nucleotide di- and triphosphate-bound in the binding 

pocket. In case of P-loop NTP-ases this property is usually achieved with the help of 

loops in the nucleotide binding site, known as switch loops (49), working as γ-

phosphate sensors. The conformations of these loops depend on the presence of the γ-

phosphate and the protein is able to conduct this conformational change to the binding 

site of the partner protein. Just like in myosin, the switch 1 loops of small G-proteins 

are also known to have a central role in partner protein binding and they might share 

an analogous mechanism (25, 44). Switch 1 loops of small G-proteins contribute to 

the binding of their guanine exchange factors (GEF), such as Sos protein of Ras or 

RCC1 of Ran. It was pointed out that GEFs are analog proteins of actin from the 

perspective of GEF binding are strongly negatively coupled to nucleotide binding 

(25), just as actin binding to myosin. However, the mechanisms controlling their 

interactions are different, because MgGTP and MgGDP weaken GEF affinity of Ras 

by the same extent (25, 40), The similarity is more observable to the interaction of 

Ras and its downstream effector Raf-kinase that binds directly to switch 1 region. 

Switch 1 loop of Ras has two conformations as well: a closed (also called state 2) and 

a disordered state (state 1) (79, 80, 88). The closed switch 1 state is formed when 

_____________________ 
9 Note that the strong binding state is the MgGTP-bound state in Ras, and the MgADP-bound 
form of myosin. 
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Figure 18. Enzyme cycle of myosin with regard to switch 1 
states. In ATP or ADP.Pi bound forms switch 1 is closed when 
actin affinity is low however, actin rebinding to M.ADP.Pi opens 
switch 1 and dissociates the γ-phosphate. The relative time spent 
by myosin in actin bound and detached states (duty ratio) is 
determined by the rate limiting step of the cycle.

MgGTP is bound, allowing Ras and Raf to interact strongly and this conformation is 

preserved in the strongly bound Ras-Raf complex 9. In the absence of the γ-phosphate 

switch 1 loop is disordered leading to 1000-fold reduction in Raf affinity. The use of 

the GTP analogue GPP-NH-P (guanosine-5’-(β,γ-imido)triphosphate) or GPP-CH2-P 

(guanosine-5’-(β,γ-methyleno)triphosphate) allowed the detection of the equilibrium 

between the two states of switch 1 because it is fully reversible in these nucleotides 

(Kstate12=2) (24, 78). Additionally, upon Raf binding the equilibrium is pushed toward 

the closed state (79). In the presence of MgGTP and MgGDP this equilibrium is not 

observable, because it is totally pushed toward the closed state (Kstate12-GTP>>10) and 

the disordered state (Kstate12-GDP<<10) respectively. These findings astonishingly 

resemble to the behavior of switch 1 in myosin, only the equilibrium constants 

between the two states of switch 1 are slightly different. Consequently, if we 

substitute the states and equilibrium constants of switch 1 of Ras into Scheme 6, it can 

perfectly describe the nucleotide regulated interaction of Ras and Raf.     

 

The enzyme cycle of myosin and Ras from the perspective of their nucleotide 
dependent interactions 
  

In myosin the time 

spent in actin-bound 

(open switch 1) or 

in detached states 

(closed switch 1) is 

determined by the 

rate limiting step of 

the enzyme cycle. If 

the rate limiting 

step populates 

predominantly 

weakly interacting 

states in the steady-

state (MgATP- and 

MgADP.Pi-bound 
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Figure 19. Enzyme cycle of ras with regard to switch 1 states. 
This is represented in a similar way as the enzyme cycle of 
myosin (Figure 18). In GTP or GDP.Pi bound forms switch 1 is 
closed when raf-kinase affinity is high. When γ-phosphate 
dissociates, switch 1 becomes disordered and raf-kinase 
dissociates. The relative time spent by ras in raf-bound and 
detached states (duty ratio) is determined by the relative rate of 
Pi and GDP release 10. However, the rate of these steps is 
determined by the binding of the upstream elements of the 
signal cascade, such as GAP and GEF. 

states), myosin spends most of the time detached from actin with closed switch 1 

(Figure 18). This is the case with myosin II, where the rate limiting step is a 

conformational change that precedes Pi release (27). Upon Pi release switch 1 opens, 

resulting in strong actin binding (41, 71). In a multi-headed myosin filament this 

results in the fact that just 5 % of the myosin heads bind to actin simultaneously, so 

that they do not impede sterically each other. In myosin V, which is a single molecule, 

the rate limiting step is the MgADP release (or a conformational change that allows 

MgADP release), resulting in predominantly populated strong actin-bound states with 

open switch 1 during the steady-state (Figure 18). This property of a two headed 

myosin V allows the processive movement along the actin filament by creating a great 

possibility for binding both heads to the actin filament at the same time in each 

enzyme cycle. 

The enzyme cycle of 

Ras can be illustrated 

in the same way as 

that of myosin Figure 

19. Here as well the 

relative rate of the 

biochemical steps 

determines the ratio of 

the strongly and 

weakly interacting 

forms of Ras. The Pi 

release induces the 

conformational 

change of switch 1, 

resulting in the 

dissociation of the 

Ras-Raf complex. The 

MgGDP release step 

________________________ 
10 Indeed the rate of MgGTP hydrolysis determines the observed rate of the Pi release in Ras 
and GAP activates the rate of the hydrolysis step. 
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allows the binding of a new MgGTP and the closure of the disordered switch 1 loop. 

This allows the binding of Raf with high affinity and the activation of its kinase 

activity. However, in the case of Ras the regulation of the conversion between the 

weakly and strongly interacting forms is controlled by external factors, concretely by 

the activity of the upstream elements of the signal pathway. GEF accelerates MgADP 

release, hence increases the MgGTP-bound fraction of RAS, while the other upstream 

regulator, GAP, accelerates the intrinsic catalytic activity of Ras and thus accelerates 

the subsequent Pi release, resulting in disordered switch 1 and the dissociation of Raf-

kinase. The most frequent mutations in Ras oncogenes inhibit the hydrolysis of 

MgGTP thus, switch 1 remains closed and Raf strongly bound to Ras, activating 

further cell proliferation.     

In summary, in spite of the fact that myosins and G-proteins have very 

different functions and binding partners, the mechanism regulating their nucleotide 

dependent interactions is very conserved.   
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Chapter 2 

 

Step 2 – Communication between the nucleotide binding pocket and 
the lever arm: the conformational change that primes the lever arm 
 

Introduction 
 

The motor domain structures having down and up lever arm states support 

structural explanations for the mechanism of MgATP induced lever arm swing (17, 

70, 75) 11. The closure of the switch 2 loop drives a 60° rotation of the converter/lever 

arm region placing it to the primed or pre-power stroke position. In spite of the fact 

that the coupling of switch 2 movement and lever arm rotation has been known for a 

long time, the detailed molecular mechanism of the transition is still not fully 

understood.  

 This lever arm priming is the same conformational change (the recovery step) 

as that observed by Baghsaw and Trentham 25 years earlier by using tryptophan 

fluorescence (1). The conserved tryptophan (Trp-501 in Dictyostelium numbering, 

homologous to Trp-510 in rabbit skeletal myosin) that serves a large fluorescence 

increase upon the recovery step is located at the C-terminal end of the relay helix that 

connects switch 2 and the converter region (figure 20). Malnasi et al. engineered a 

single tryptophan Dictyostelium motor domain that contains only this native 

tryptophan (W501+ construction) (58). By the use of this construct a much better 

signal-to-noise ratio could be achieved than by the use of the wild type however, the 

elimination of the other tryptophans did not change the workings of myosin.  

Scheme 7 shows the reaction steps of the myosin basal ATP-ase cycle as it can 

be seen by the use of the W501+ construct. Step 1 and 2 (K1K2 in Scheme 7) represent 

the two-step induced-fit MgATP binding process. M†.MgATP, which has a 20% 

lower fluorescence than the M apo state (PDB: 1q5g (71), corresponds to the pre-

recovery (i.e. open, post-rigor, down lever arm state) structure (PDB: 1FMW, 1MMD 

(26). 

______________________ 
11 After the production of the first myosin structure in 1993 (70), the first primed or up lever 
arm state structure (75) was published in Biochemistry (the impact factor of this journal was 
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Figure 20. The conformational change of the relay region 
during the recovery step. Figures A and B show the pre- 
and post-recovery conformation of the relay region. During 
the recovery step, Gly-457 (switch 2) moves toward the γ-
phosphate of ATP, which pulls down the N-terminal part of 
the relay helix via a hydrogen bond. As a result, the relay 
helix moves in a seesaw-like manner and then unwinds. 
The pivoting point of the seesaw is highlighted by spacefill 
modeling (Phe-652 in yellow and Phe-481 and Phe-482 in 
purple). Trp-501 is also shown by stick representation. 
Since the relay loop and thus Trp-501 is missing in the 
original pre-recovery structure, it is modeled. And then 
both structures were relaxed by applying molecular 
dynamics simulation. 

4.8 in 1996) with perhaps the most important significance of the last 25 years of myosin 
research.  
This state has an open switch 2, and thus the lever arm in pre-recovery (down) 

orientation. MgADP binding (K7K6 in scheme 7) induces that state as well. However, 

when ATP binds to myosin the binding process is followed by the recovery step (step 

3a in Scheme 7), when switch 2 loop closes and the relay/converter/lever arm region 

rotates into the post-recovery state (primed or up lever arm orientation, state 

M*.MgATP in scheme 1, PDB code: 1VOM, 1MND (17, 75)). The forward direction 

of the recovery step 

results in a 110% 

fluorescence intensity 

increase of Trp-501. This 

serves a useful signal to 

follow the 

conformational change in 

the relay/converter region 

during the recovery step. 

 The main finding 

of Malnasi et al. was the 

separation of the recovery 

(step 3a) and the 

following hydrolysis 

(step 3b) steps, which 

were represented in the 

Bagshaw-Trentham 

scheme as a single step 

(step 3) (58). Indeed, the 

recovery step results in 

the catalytically active 

conformation which can 

hydrolyze ATP. The 

post-recovery structures 

of the motor domain 

reveal that the closed 



                                                                                  PhD Thesis – Bálint Kintses 

44 

conformation of switch 2 is required for the hydrolysis of ATP (6, 34), since in that 

state the amino group of the conserved Gly-457 switch 2 residue forms a hydrogen 

bound with a γ-phosphate oxygen. This coupling ensures that ATP hydrolysis occurs 

just when the lever arm is primed, avoiding wasteful hydrolysis without force 

generation. The hydrolysis step 

itself does not cause Trp-501 fluorescence change, but its pulling effect on the 

equilibrium of the recovery step makes the high fluorescent states (M*.MgATP, 

M*.MgADP.Pi) more populated.  

Nevertheless, several computer simulations have been published recently on 

the structural analysis of the recovery step (16, 30, 47, 62, 89, 90) . Fischer et al. 

composed a structural transition between the pre- and post-recovery states by 

modeling the intermediate structures using an unconstrained minimum-energy 

pathway simulation (16). The resulting structural trajectory shows that the relay helix 

movement can be separated into two phases. In the first one the relay helix moves in a 

seesaw-like fashion coupling the movement of switch 2 and the rotation of the lever-

arm. The closure of switch 2 pulls down the relay helix near to its N-terminal end 

through a hydrogen bridge between Gly457 and Asn-475.  Due to this pulling the C-

terminal end of the relay helix swings upwards because the helix is supported by a 

fulcrum that serves as the pivoting point in the middle of the helix, like in the case of 

a real seesaw (Figure 20). The hydrophobic fulcrum of the relay helix is formed 

mainly by three conserved phenylalanine residues: F652 (part of the 3rd strand of the 

central β-sheet), F481, and F482 (relay helix). In the second phase the SH1 helix 

movements provoke a further 40 ° rotation of the converter/lever arm region, which 

causes an unwinding in the C-terminal part of the relay helix. My college, Zenhui 

 
 
Scheme 7. The ATP-ase cycle of myosin in the absence of actin. † and * correspond 
to the low and high fluorescent states of Trp-501 respectively.  
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Yang produced a similar transition for the recovery step by using a different in silico 

method (nudge elastic bending). His results and other molecular dynamics simulations 

confirmed the two phases and the seesaw-like motion of the relay helix (62).  

These computational simulations composed and visualized potential structural 

transitions of the recovery step, which might help to elucidate the communication 

between switch 2 and the lever arm. However, experimental validation of the model 

has been lacking. 

 

Aims 
 

Our aim was to investigate experimentally the seesaw-like movement of the 

relay helix suggested by the computational model of the structural trajectory of the 

recover step (16). We produced two mutants in the MW501+ construct, in which 

different phenylalanines from the proposed pivoting point of the relay seesaw were 

mutated to alanines (Figure 20). Since alanine is a significantly smaller residue than 

the original phenylalanine the mutations reduce the size of the fulcrum, which is 

supposed to lead to the loss of the supporting role of the phenylalanine cluster. The 

MF481A,F482A construct has a reduced fulcrum in the side of the relay helix, while 

MF652A contains a reduced support for the relay helix. Since Trp-501 shows a large 

fluorescence increase upon the recovery step, MW501+ single tryptophan construct is an 

ideal construct to test the effect of the mutations on the recovery step. 

 

Results 

Steady-state fluorescence of MF481A,F482A and MF652A  
 

We measured the steady-state fluorescence emission spectra of the two 

mutants (MF481A,F482A and MF652A) in the presence of different nucleotides and 

compared them to that of MW501+ (Figure 21). At 20 °C in the absence of nucleotide 

the three constructs have similar emission spectra (emission maximum at 342 nm), 

just like in the presence of MgADP when all constructs show a 15% quench and 2 nm 

blue shift compared to the apo state. In contrast, in the presence of ATP the mutants 

show smaller fluorescence enhancements than the MW501+. While the fluorescence of 

the MgATP-bound MW501+ is 100% higher than that of the MgADP-bound (58), the 
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fluorescence intensity increases of MF481A,F482A and MF652A  were only 10% and 5% 

respectively. This observation can be the consequence of two possible scenarios. The 

smaller fluorescence increases of the mutants can be the manifestation of a changed 

conformation of the relay helix. Alternatively, the conformations sensed by Trp-501 

are not changed, only the K3a of the mutants are more pulled to the M†MgATP states. 

The ADP.AlF4, which is an ADP.Pi analogue, induces a dominant post-recovery state 

(the high fluorescence state of MW501+). The comparison of the fluorescence intensities 

of the ADP.AlF4-bound forms (Figure 21) can help the decision. While the 

fluorescence level of the MW501+.MgADP.AlF4 state is 110% higher than the 

MW501+.MgADP state, those of the MF481A,F482A.MgADP.AlF4 and 

MF652A.MgADPAlF4 are just 40% and 35% higher respectively. The fluorescence 

spectra of the mutants measured at different temperatures show that the relative 

fluorescence intensities of the apo, MgADP-, and MgADP.AlF4-bound forms were 

not influenced by temperature. Whereas the apo and the MgADP-bound states are 

known to be single fluorescent states, MF481A,F482A.MgADP.AlF4 and 

 
 
Figure 21. Fluorescence emission spectra of 3 μM MW501+ (A), MF481A,F482A  (B) and 
MF652A  (C) in the absence (—) and presence of 0.5 mM MgADP (◦◦◦) or 0.5 mM MgATP 
(•••) or  MgADP.AlF4 (---) at 20 °C. Tryptophan was excited at 297 nm. 
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MF652A.MgADP.AlF4 populate predominantly a single fluorescent state, which is 

structurally different from the wild type post-recovery state (MW501+.MgADP.AlF4). 

 

Structural implication to the changed post-recovery state by acrylamide quenching 
experiment  

 

In the pre-recovery state Trp-501 is located on the surface of the myosin and 

exposed to the solvent however, during the recovery step this becomes a buried 

residue (58). Since the fluorescence quenching effect of  acrylamide depends on the 

exposure of the fluorophore, we used acrylamide collisional quenching to explore the 

possible structural differences of the Trp-501 environment between the post-recovery 

states of the mutants and the MW501+. We titrated the myosin constructs with 

acrylamide (up to 0.4 M) in the absence and presence of MgADP, MgATP, and 

MgADP.AlF4 (Figure 22). The slope of the fitted line on the Stern-Volmer plot gives 

the Stern-Volmer constant, which is in line with the solvent exposure. 

The smaller the slope the more buried the fluorophore. Due to this the ATP and 

ADP.AlF4 complex of MW501+ show significantly decreased Stern-Volmer constants 

Figure 22. Stern-Volmer plots of 
MW501+ (A), MF481A,F482A  (B), and 
MF652A  (C), showing the tryptophan 
fluorescence quenching effect of 
acrylamide plotted against acrylamide 
concentration in the absence (■) and 
presence of 0.5 mM MgADP (▲), or 
MgATP (○), or  MgADP.AlF4 (□) at 
20 °C. F is the tryptophan fluorescence 
intensity (excited at 297 nm) at 340 
nm. Stern-Volmer constants are 
presented in Table 1. 
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Figure 23. Characterization of MgADP affinity of MW501+ (▲), MF481A,F482A (○), and 
MF652A (■). A: the observed rate constants of ADP binding (K7K6 in scheme 7) plotted 
against MgADP concentration. 3 μM motor domains were mixed with MgADP in stopped-
flow at 20 °C. B: Stopped-flow records of mant-ADP dissociation by applying chasing 
experiments. 1.5 μM MW501+, MF481A,F482A and MF652A preincubated with 10 μM mant-ADP 
were mixed with 1mM ATP in stopped-flow. Double exponentials were fitted to the 
curves. A dominant fast phase (amplitude=0.76, kobserved=3.5 s-1 of MW501+, amplitude=0.49, 
kobserved=0.36 s-1 of MF481A,F482A and amplitude=0.72, kobserved=0.4 s-1 of MF652A) was 
followed by a slower phase (amplitude=0.10, kobserved=0.12 s-1 of MW501+; amplitude=0.2, 
kobserved=0.09 s-1 of MF481A,F482A and amplitude=0.5, kobserved=0.14 s-1 of MF652A) MgADP 
dissociation from MW501+ has similar rate constant as the fast phase of the mant-ADP 
dissociation. Kinetic data are presented in Table 5.

compared to the apo and ADP-bound forms, indicating the more buried tryptophan 

fluorophore. In the mutants these differences between the MgADP.AlF4- and 

MgADP-bound state cannot be observed (Table 4), indicating Trp-501 remains on the 

surface during the recovery step of the mutants. 

Transient kinetics of Trp-501 signal change of MF481A,F482A and MF652A 
 

Trp-501 shows a fast fluorescence quench upon nucleotide binding, 

corresponding to the formation of the pre-recovery state of the lever arm. This 10-

15% fluorescence quench allowed us to follow the kinetics of the nucleotide binding 

steps of the mutants in a stopped-flow device and compare them to MW501+. At 20 °C 

the signal changes induced by mixing the constructs with MgADP under pseudo first-

order conditions could be fitted with a single exponential function. From the ADP 

concentration dependence of the observed rate constant of MgADP binding (Figure 

23A) both mutants follow two-step-binding kinetics, indicative of an induced-fit 

mechanism, as it was described earlier in the case of MW501+ (step 6 and 7 in Scheme 

7) (58). However, the isomerization step (k+2 in Scheme 7) is so fast in MW501+ that the 

rate of the binding cannot be saturated in the applied ADP concentration range. The 

second-order rate constants of MgADP binding to the mutants are 5 fold less 
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compared to the wild type (Table 5) and k+2 of the mutants are slower with at least 5-

10 times. 

We also measured the ADP off-rates of the mutants by mant-ADP chasing 

experiments. The ADP off-rates also decrease approximately 10 times (Table 5 and 

Figure 23B) in the mutants thus,  MgADP affinities are only slightly affected by the 

mutations. 

 MgATP binding to MW501+ (step 1 and 2 in Scheme 7) is accompanied by the 

same fluorescence quench of Trp-501 as the MgADP binding. However, this quench 

can be detected only at low temperatures (e.g. 6 °C), because the higher the 

temperature, the faster the subsequent recovery step followed by a huge fluorescence 

enhancement, which does not allow the emergence of the transient fluorescence 

quench. At 6 °C the recovery step slows down compared to the MgATP binding so 

Figure 24. Stopped-flow experiments of MgATP binding. A: Time courses of tryptophan 
fluorescence change upon MgATP (1 mM) binding to 1.5 μM MW501+, MF481A,F482A  and 
MF652A at 6 °C. The initial quench can be detected in all cases. B: The observed rate 
constants of the fluorescence quench of MW501+ (▲), MF481A,F482A (○) and MF652A (■) plotted 
against MgATP concentration. C: Stopped-flow records of ATP binding to MF481A,F482A at 
20 °C. The fluorescence quench is followed by a small enhancement phase with a rate 
constant 5s-1. D: Stopped-flow record of MW501+ MgATP (1 mM) binding at 20 °C. The 
fluorescence increment has two phases with a rate constant >150 s-1 and 25 s-1. 
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much that the fluorescence quench transiently appears in the stopped-flow record 

(Figure 24A) (56). Figure 24A also shows the stopped-flow records of the mutants in 

reaction with MgATP. The binding event associated with the quench can be seen in 

all three cases. Single exponentials were fitted on the quenches and ATP 

concentration dependence of the observed rate constants show that the second order 

binding constant of MgATP binding is slower in the mutants than in the MW501+, just 

like in the case of MgADP (Figure 24B, Table 5). The subsequent recovery step 

accompanied by the fluorescence enhancement was shown only by MW501+. At 20 °C 

both mutants show a small increase (MF481A,F482A and MF652A 3% and 2%,respectively) 

after the quench (Figure 24C). This is due to the fact that the higher the temperature, 

the bigger the equilibrium constant of the recovery step (56) and the high fluorescent 

state is more populated (it is in line with the emission spectra). At higher MgATP 

concentration, when the accelerating fluorescent quench has already separated from 

the enhancement phase, the enhancement phase does not show MgATP concentration 

dependence. The rate constants of these phases for MF481A,F482A and MF652A are 5 s-1 

and 2 s-1. Compared to the mutants, the amplitude of the MgATP induced fluorescent 

enhancement of MW501+ is larger with almost two orders of magnitude and it has two 

phases Figure 24D. The faster phase is the recovery step (>150 s-1) and the second 

phase corresponds to the hydrolysis step (kobs=(K3a/(1+K3a))xk3b+k-3b=25 s-1). The 

hydrolysis pulls the recovery step further to the high fluorescent M*MgATP state, 

which results in fluorescent enhancement 12.  

      
 

________________________ 
12 The fast phase of the fluorescence enhancement upon the reaction of MgATP and MW501+ 
was not detected previously in stopped-flow, only in equilibrium kinetic experiments (56, 58). 
However, the smaller dead-time of our stopped-flow allows us to see the presence of the fast 
phase (see the dead-time of the stopped-flow in Material and methods). We measured the 
reaction of MgATP and MW501+ at higher temperatures, where the equilibrium constant of the 
recovery step is bigger. Thus, the fast phase is represented with larger amplitude. The 
temperature-jump/stopped-flow apparatus developed by us allows the measurement of such 
fast reactions even above the denaturation temperature of the protein, which is a slower 
process (for detailed description of the apparatus and this measurement see Appendix). These 
measurements confirmed the finding that the recovery step appears in the stopped-flow signal. 
At 50 ˚C the relative amplitude of the fast phase is 0.75 (Appendix figure 2). This has the 
consequence that the equilibrium constant of the recovery step has been underestimated (58). 
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Characterization of the ATP hydrolysis steps of MF481A,F482A and MF652A 
 

We carried out quenched-flow experiments to determine the hydrolytic 

activities of the mutant motor domains using 32P-labeled ATP as a signal (Figure 25).  

phase is three and six times smaller in MF481A,F482A and MF652A, respectively, than in 

the MW501+. The amplitude of the burst phase gives the steady-state ratio of the pre- 

and the post-hydrolytic states thus, the apparent equilibrium constant of the hydrolysis 

step can be calculated (appKhydrolysis=M*.MgADP.Pi/(M†.MgATP+M*.MgATP)). 

MF481A,F482A and MF652A  show 4 

and 9 times smaller apparent 

equilibrium constants for the 

hydrolysis step than MW501+ (Table 

5), respectively. 

In the case of the mutants 

the rate of the Pi burst was also 

slower, as shown by the 

exponential fitted (kobserved 

hydrolysis=25 s-1 of MW501+, kobserved 

hydrolysis=5.3 s-1 of MF481A,F482A, 

kobserved hydrolysis=2.2 s-1 of MF652A) 

The rates of the Pi bursts of the 

mutants are identical to the rate 

constants of the fluorescence enhancements induced by MgATP. In the case of 

MW501+ the second phase of the fluorescence enhancement has the same rate as the 

observed rate of the Pi burst (25 s-1). 

The rate of the steady-state phase represents the turnover rate of the enzyme 

cycle (k4+ in Scheme 7). The quenched-flow experiments show that the steady-state 

rates of the mutants are slightly faster than that of MW501+ (Table 5). This is confirmed 

by steady-state turnover rate measurements carried out by PK/LDH coupled assay. 

 

 
Figure 25. Phosphate production by MW501+ 
(▲), MF481A,F482A (○), and MF652A (■). 25 μM 
motor domains and 180 μM γ32P-ATP were 
rapidly mixed by quench-flow at 20˚C. All time 
courses show an initial burst phase followed by a 
steady-state phase. The relative amplitude of the 
burst of MW501+, MF481A,F482A and MF652A are 0.3, 
0.1, and 0.05 respectively. Kinetic data are 
presented in Table 5.
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Determination of the equilibrium constant of the recovery step   

 
Trp-501 fluorescence reveals that the deletion of the phenylalanine fulcrum 

does not perturb the pre-recovery conformation, but it does perturb the subsequent 

conformational change, the recovery step. However, an analogous conformational 

change can be observed in the mutants, which results in a structurally distorted post-

recovery conformation. Furthermore, quench-flow experiments show that the mutants 

are catalytically active in this changed post-recovery state, indicating a switch 2 

closure that is essential for the hydrolysis of ATP. Furthermore, the Pi burst phase of 

the quench-flow experiments followed by a steady-state phase indicates that the 

observed rate of the ATP hydrolysis step is faster than the rate limiting step of the 

enzyme cycle (step 4 in Scheme 1), both in the mutants and in the wild type. 

These findings show that the mutations do not change basically the enzyme 

cycle of myosin represented by Scheme 7. Hence, before the rate limiting 

conformational change (step 4) three states are populated (M†.MgATP, M*.MgATP, 

and M*.MgADP.Pi) in the steady-state (27). The steady-state fraction of the low 

(M†.MgADP) and the high (M*(total)= M*.MgATP+M*.MgADP.Pi) fluorescent states 

can be calculated by the steady-state fluorescence spectra: M†=(FMgADP.AlF4-

FATP)/(FMgADP.AlF4-FMgADP) and (M*=(FMgATP-FADP)/(FMgADP.AlF4-FMgADP), where F is 

the fluorescence intensities of the emission maximum of the spectra. The ratio of the 

two fractions gives the apparent equilibrium constant of the recovery step (appKrecovery-

step=M*(total)/M†.MgADP). The appKrecovery-step is 19 and 38 times smaller in MF481A,F482A 

and MF652A than that in MW501+ (Table 5). Since the relative amplitude of the Pi burst 

of the quench-flow experiment gives the steady-state fraction of the M*.MgADP.Pi 

state, the relative population of the three states (M†.MgATP, M*.MgATP, and 

M*.MgADP.Pi) can be determined and the equilibrium constants of the recovery step 

(K3a) and the hydrolysis step (K3b) can be calculated (Table 5).  The K3a of the 

mutants show great perturbation, as it is 20 and 30 times smaller in MF481A,F482A and 

MF652A, respectively, than in the MW501+. K3b of the mutants do not deviate from that 

of the MW501+, although the Pi bursts of the mutants are decreased several times. This 

is the consequence of the changed conformation of the post-recovery state that pulls 

back K3a and thus decreases the Pi burst. A similar effect was found in other mutants 

(57).   
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Effects of the mutations in the presence of actin 

 

We determined the actin affinity of the mutants in the absence and presence of 

ADP. Pyrene-labeled actin was mixed with myosin up to 2 μM in a stopped-flow 

device. Single exponentials were fitted on the records and the received observed rate 

constants were plotted against myosin concentration (Figure 26A and B). The second 

order binding constant (on-rate) and the rate of the dissociation (off-rate) were 

determined (k+A and k-A, respectively in Table 6, according to the accepted myosin 

nomenclature). By comparing the results to MW501+ (28), it can be seen that the actin 

Figure 26. The effect of the mutations in the presence of actin. A and B: myosin 
concentration dependence of the observed rate of the acto-myosin association of 
MF481A,F482A  and MF652A respectively, in the absence (■) and presence (▲) of MgADP at 20 
˚C. Myosin was mixed with 0.05 μM pyrene-labeled actin and its fluorescence is followed. 
The fitted exponentials to the signal change gave the observed rate constants. The actin 
affinities listed in Table 6. C: MgATP-induced acto-myosin dissociation of MW501+ (▲), 
MF481A,F482A (○), and MF652A (■).  1.5 μM pyrene-labeled actin was preincubated with 1 μM 
motor domain and mixed with different ATP concentrations in a stopped-flow at 20 ˚C. 
The observed rate of the fitted exponentials plotted against MgATP concentration. The 
parameters of the fitted hyperbola are presented in Table 6. D: actin-activated ATP-ase 
activity of MW501+ (▲), MF481A,F482A (○), and MF652A (■).Hyperbolas were fitted on the data, 
the received parameters are presented in Table 6. This experiment was carried out in a 
low-ionic buffer (see Material and methods).
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affinity (Kd,A) of MF481A,F482A and MF652A decreased by 10 and 5 times respectively. In 

the presence of ADP the actin affinity of the mutants (Kd,DA) compared to the wild 

type weakened similarly as in its absence thus, the thermodynamic coupling ratios did 

not change significantly.  

 The ATP-induced acto-myosin dissociation also shows that the mutations 

make the acto-myosin interaction weaker. Pyrene-labeled acto-myosin complex was 

mixed with ATP up to 1mM in the stopped-flow. Hyperbola were fitted to the 

MgATP concentration dependences of the observed rate constants (Figure 26C). We 

found that the second order rate constants of MgATP binding and the maximum rates 

of the dissociation were several times larger in case of the mutants than in MW501+  

(Table 6). On the contrary, the actin activated ATP-ase activities measured by 

pyruvate-kinase/lactate-dehydrogenase coupled assay show that in spite of the fact 

that the Vmax values of the mutants are decreased compared to the MW501+, the half 

saturation (Km) does not differ significantly (Table 6 and Figure 26D). The latter 

parameter shows that in weak binding states actin affinity is not perturbed by the 

mutations. However, the former experiments reveal that the strong binding states 

show decreased affinities.   

  

Discussion 

 
It has been known for a while that the nucleotide binding site controls the state 

of the lever arm through the conformation of the switch 2 loop. However, the 

molecular mechanism of the communication between these two sites has not been 

fully understood yet. A recent in silico simulation composed a structural trajectory for 

the priming of the lever arm (recovery step) between the two end states of the 

conformational change. The results suggested that closure of switch 2 and 25 ° 

rotation of the converter domain are coupled by a seesaw-like movement of the relay 

helix (16). The N-terminal part of the relay helix moves towards the ATP due to the 

pulling of switch 2 closure to which the C-terminal of the helix reacts as a seesaw and 

moves toward the opposite direction. According to the simulated structural trajectory 

this seesaw-like movement of the relay helix is followed by a second phase in which 

the resulting converter rotation provokes a further 40 ° rotation. This later movement 

cannot be tolerated by the relay helix, thus the C-terminal region of the relay helix 
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unwinds or kinks initiated by the break of the intra-helical hydrogen bond 486-490. 

Fischer et al. explained the order of these two phases by the fact that the second phase 

is sterically hindered until the side chain rearrangements of the seesaw movement 

(62). However, such a direct structural trajectory of the recovery step neglects the 

dynamic behavior of the protein that allows it to populate the neighboring 

conformational space along the suggested trajectory. Recent umbrella sampling 

simulation showed a wider range of the possible conformations during the recovery 

step (30), letting conformations different from the main stream of the reaction 

trajectory suggested by Fischer et al. be populated (16)).  

Nevertheless, the simulated structural trajectory reveals key residues, which 

can be essential in conducting the information of switch 2 state toward the converter 

region. Fischer et al suggested that a hydrophobic cluster (Phe-481/Phe-482/Phe-652) 

at the middle of the relay helix serves as the pivoting point of the relay seesaw during 

the recovery step (16). To check experimentally the necessity of the appointed 

residues they were mutated to dysfunctional residues.  

We made two different mutant constructs (MF481A,F482A and MF652A) with a 

single Trp-501 background. The two mutant myosin construct behave astonishingly 

identically. Their Trp-501 residues report that their fluorescence states are very 

similar, and all of the reaction steps of their enzyme cycles are changed by the 

mutations in the same mode and magnitude (see Table 4, 5, and 6). Fluorescence 

experiments show that the mutations have no effect on the lever arm conformations in 

the apo and pre-recovery states however, nucleotide binds to the mutants more slowly. 

On the contrary, the changed Trp-501 fluorescence of the mutants upon ADP.AlF4 

binding indicates that the conformation of the relay helix is perturbed in the post-

recovery state. Interestingly, the mutants can hydrolyze ATP in this changed post-

recovery conformation. We can state that the switch 2 is closed in this conformation 

just like in the wild type because the closed conformation of switch 2 is required for 

hydrolysis to be effective (6, 34). Hence, we judge that the lack of the phenylalanine 

fulcrum diverts the relay helix into a changed conformation upon switch 2 closure. 

This perturbed conformation is energetically less favorable, as indicated by the 

dramatically suppressed equilibrium constants of the recovery step. The conformation 

of the relay helix in this state resembles to its pre-recovery conformation, since Trp-

501 remains on the surface of the motor domain, which is a characteristic of the pre-

recovery conformation (58). This indicates that the movement of the relay helix is 
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impeded at the beginning of the reaction trajectory of the recovery step. Hence, it is 

likely that, although switch 2 

closes, the relay seesaw cannot 

tilt in the absence of its pivoting 

point. In other words, the 

information of switch 2 closure 

cannot get to the C-terminal of 

the relay helix; therefore, the 

energetic landscape of the 

converter/lever arm region 

remains similar to that of the pre-

recovery state.  

 We also performed in 

silico molecular dynamic 

simulations on the wild type 

motor domain and on the two 

mutated constructs 13. These 

results are consistent with the 

experimental data. The relay 

helix structure in the pre-recovery 

conformation is not perturbed by 

the mutations. (Figure 27A) 

However, the post-recovery 

conformation is unstable and the 

helical structure at the kink 

region of the relay helix collapses 

into a distorted local energy 

minimum (Figure 28).  

_______________ 
 13 Since the construction of these 
experiments were done by Zenhui 
Yang, I present these results just in 
the discussion section. The design of 
the experiments and the analyses of 
the data were carried out by me.  

 

 
Figure 27. The effect of the mutations on the pre-
recovery structure revealed by molecular dynamics 
simulation. The mutations F481A/F482A or F652A 
were introduced into the pre-recovery structure and 
molecular dynamics simulations were performed. 
A: The effect of the F481A/F482A mutations on 
the relay region conformation (wild type green, 
mutant blue). B and C: average amplitude of the 
torsion angle (Φ and Ψ) changes (δ) during the 
equilibrium phase of the molecular dynamics 
simulation of MF481A,F482A (●) and MF652A (●) 
respectively, compared to the wild type (□). The 
two constructs show similar changes in the 
mobilities. The structural demonstration of the 
consecutive residues represented on the x-axis of 
graphs B and C. 
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This result also shows that the phenylalanine fulcrum is essential for the right post-

recovery lever arm conformation. 

We also investigated the dynamics of the relay helix, and checked how the 

elimination of the pivoting point influences it. We collected the main-chain torsion 

angle Φ and Ψ of all residues in the relay helix during the equilibrium phase of the 

molecular dynamics simulation. Figures 27B and C show the average amplitudes of 

the torsion angle changes (δ) of the relay helix residues in the pre-recovery states of 

the wild type and the mutants. In the wild type motor domain most of the torsion 

angles have very similar mobilities, and this δ value is also characteristic of other 

helical residues in the motor 

domain. However, there is a 

highly mobile part in the relay 

helix (Ψ491/Φ492) exactly in the 

kink region. The ramachandran 

plots of these highly mobile 

residues show that Ψ491/Φ492 

angles are located even outside of 

the favored αR region of a central 

helix residue(31) however, other 

residues do not show such 

phenomena (Appendix figure 3). The high mobilities of Ψ491/Φ492 and their 

distorted position in the ramachandran plot indicate that this part of the kink region is 

strained in the pre-recovery state. Furthermore, we could perform the same analysis 

on a structure representing a state that is situated halfway on the reaction trajectory of 

the recovery step, since we also modeled in silico a structural trajectory for the 

recovery step. This state is picked up after the seesaw-like movement of the relay 

helix (first phase of the recovery step) but before the unwinding (kinking) of the relay 

helix (second phase of the recovery step). In this state the torsion angles of the whole 

kink region (486-492) behave similarly to the Ψ491/Φ492 in the pre-recovery state. 

This finding indicates that the seesaw movement increases the instability of the kink 

region, which is indicative of the presence of strain in this region. This strain leads 

finally to the unwinding of the helix. 

The mutations have intriguing effects on the dynamics of the relay helix. 

Interestingly, at the eliminated pivoting point the mobilities of the torsion angles are 

 
Figure 28. Comparison of the post-recovery relay 
region of the wild type and the mutation 
F481A/F482A. Molecular dynamics simulations 
were applied to achieve energetically lower 
conformations. 
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not changed. However, they are increased by more than 50% at positions four 

(Ψ486/Φ487) and six (Ψ488/Φ489) amino acid away from the mutations in 

MF481A,F482A. At the same time, the mobilities of the Ψ491/Φ492 torsion angles are 

dropped to the half of that of the wild type and they become similar to other torsion 

angles of the relay helix residues (Figure 27B). Even their ramachandran plots 

become similar to that of other relaxed helical residue (Appendix figure 3). On the 

other hand, Ψ488/Φ489 angles of MF481A,F482A tend to move out from the relaxed 

region to a similar region of the Ramachandran plot to what is populated by the 

Ψ491/Φ492 in the wild type, indicating that now these residues become strained. A 

similar effect was found in case of MF652A (Figure 27C).  

These findings indicate that the lack of the pivoting point shifts the strained 

part of the kink region by a few amino acids (Ψ486/Φ487 and Ψ488/Φ489) in the pre-

recovery state. In other words, the elimination of the fulcrum rearranges strains along 

the relay helix, even at the beginning of the reaction trajectory of the recovery step. 

However, the produced strain in the kink region is supposed to be essential to the 

formation of the post-recovery state, and we also found that the tension is increasing 

in the kink region during the seesaw movement in the wild type myosin. 

 In summary, the mutational analysis proved the essential role of the relay 

fulcrum during the recovery step, even at the beginning of the reaction trajectory (16). 

Therefore, in the light of the structural data the pivoting role of the fulcrum and the 

seesaw-like tilt of the relay helix is seems to be a potential mechanism which conducts 

the closure of switch 2 to the converter domain and transforms the energetic landscape 

of the relay/converter/lever arm region to make the primed lever arm position more 

favorable. 

Furthermore, the detailed cognition of the relay movement during the recovery 

step, helps us to identify those conformational changes that can lead to the triggering 

of the power stroke (see (43) and Chapter 4). 
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Chapter 3 

 

Step 3 – The mechanism that allows actin rebinding to the post-
hydrolytic primed motor domain 
 

Introduction 
 

Although the combination of the structural and kinetic investigations has led to 

a wide knowledge in the workings of steps 1 and 2 of the Lymn-Taylor model, steps 3 

and 4 that lead to the rigor complex are still poorly understood (18). 

 In step 3, actin has to bind back to myosin having primed lever arm and 

MgADP.Pi in the nucleotide binding pocket to achieve force generation. The priming 

of the lever arm, the recovery step is a fast (kobs~1000s-1) equilibrium step (K3a~1) 

when MgATP is in the nucleotide binding site (step 3 in Scheme 7). Since this step is 

fully reversible both the pre- and post-recovery positions of the lever arm are 

populated (58). If the lever arm movement in MgADP.Pi (reverse recovery step, step 4 

in scheme 7) was also a fast equilibrium step, actin would bind to myosin with a great 

chance after the reversal of the lever arm swing (to the M†.MgADP.Pi state). 

However, this results in a futile cycle 14 and the hydrolysis of ATP without force 

generation is avoidibly “uneconomic”. 

________________________________ 
14An enzyme cycle without force generation. 

 
 
Scheme 7. The ATP-ase cycle of myosin in the absence of actin. † and * correspond 
to the low and high fluorescent states of Trp-501.  
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Thus the question arises how myosin maximizes the chance of actin rebinding 

to myosin after hydrolysis, but before the reverse recovery step. Does hydrolysis (or 

the lever arm priming) influence the actin binding region in order to change the weak 

actin affinity in ATP (46)? If this was the case, there would be a hydrolysis (or lever 

arm priming) dependent communication between the nucleotide binding site and the 

actin binding region. However such a mechanism has not been observed. Moreover, 

the actin affinity in MgADP.Pi is seems to be as weak as in the MgATP-bound form, 

inducing immediate acto-myosin dissociation (41). Consequently, the lever arm 

movement has to be somehow different in MgADP.Pi, in order to maximize the 

chance of actin rebinding to myosin with MgADP.Pi and primed lever arm. However, 

the lever arm movement in MgADP.Pi has not been a well-characterized process 15.  

 There are two different possibilities to maximize the fraction of M*ADP.Pi, to 

which actin has to bind. According to the first scenario the equilibrium constant of the 

lever arm movement in MgADP.Pi is pushed absolutely to the primed M*MgADP.Pi 

state (K4<<1) and the relative fraction of M†MgADP.Pi state is very low (46). This 

allows the lever arm movement to be a fast step and the subsequent Pi release has to 

be the rate limiting step of the cycle (22). Alternatively, actin binds with great 

probability to the myosin having primed lever arm if the lever arm movement in 

MgADP.Pi is a slow step. More exactly, the forward rate of the reverse recovery step 

is much slower than the rate of actin binding. According to this scenario the rate 

limiting step of the cycle is this step, and the subsequent Pi release is a fast step. In 

other words, the question is weather a thermodynamic or a kinetic barrier “blocks” the 

lever arm in the primed state, waiting for actin binding. The two scenarios cannot be 

distinguished easily by kinetic experiments, but they mean very different activation 

mechanisms of the ATP-ase cycle upon actin binding. 

 Recently, experimental evidence was found for the entitlement of the later case 

(27), presented in details in Máté Gyimesi’s PhD thesis. Two single tryptophan motor 

domain constructs were used to investigate the kinetics of Pi binding, release steps, 

and that of the lever arm movement in MgADP.Pi (step 4 and 5 in Scheme 7). One of 

the constructs contains a tryptophan in the relay helix (MW501+ construct) and senses 

the lever arm movement, while the other one (MW129+) is sensible to the 

___________________________ 



                                                                                  PhD Thesis – Bálint Kintses 

61 

15 These conformational changes in fact belong to the second step of the Lymn-Taylor model, 
but the conclusions to be derived are strictly coupled to the understanding of actin rebinding 
to myosin. 
 

 

nucleotide binding steps. Both 

constructs pre-incubated with 

MgADP were mixed and titrated 

with Pi in stopped-flow, and they 

were also mixed with MgADP after 

pre-incubation with saturating 

amount of Pi. The kinetic analysis 

revealed that the slow step is the 

lever arm movement in MgADP.Pi, 

and not the Pi release step (Figure 

29), and that the forward rate of step 

4 (reverse recovery step, k4+ in 

scheme 7) is equal with the steady-

state turnover rate of the basal ATP-

ase cycle (0.05s-1). Furthermore, the Pi binding and release steps were significantly 

faster and K4 was found to be 0.3. 

 Based on these findings, the main difference between the lever arm 

movements in MgADP.Pi and MgATP is not in the equilibrium constants. However, 

the observed rate of the recovery step in ATP is faster with four orders of magnitude 

than the reverse recovery step in MgADP.Pi. Consequently, there must be a 

conformational change induced by the hydrolysis step (step 3c in scheme 7) before the 

reversal swing of the lever arm. This supposed rearrangement in the active site lowers 

the rate of the lever arm movement most likely by increasing its activation energy. 

However, the coordinates of the primed lever arm state structures with MgATP 

(MgADP,BeFx) or MgADP.Pi (MgADP.AlF4, MgADP.VO4) analogues do not 

manifest any difference in this region.  

Recently, in silico molecular dynamics simulations on a structure having 

primed lever arm and ATP or ADP.Pi in its nucleotide binding site revealed some 

conformational differences (46). A small displacement of the cleaved γ-phosphate 

moves the switch 2 loop less than 1 Å away from its pre-hydrolytic position. This 

 
Figure 29. Stopped-flow records of the 
reactions of MW501+ with MgATP and 
MgADP.Pi. The fluorescence enhancement 
upon MgATP binding has two phases 
(kobs>150 s-1 and 25 s-1),  upon MgADP.Pi 
binding it is a slow single-phase 
fluorescence enhancement (0.2 s-1).   
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movement pushes the side-chain of Asn-475, which reacts to it by turning away 

(Figure 30B). This side-chain movement of Asn-475 allows the formation of a 

hydrogen bond between Asn-475 and Tyr-573 residues. This newly formed hydrogen 

bond is supposed to block Tyr-573, not allowing it to move back to its pre-recovery 

conformation. Hence Tyr-573 cannot be involved in the conformational change of the 

recovery step in MgADP.Pi. On the contrary, in the MgATP-bound myosin Tyr-573 

moves or wedges between the relay helix and the SH1 helix during the recovery step 

(46, 47) (Figure 30AB). According to this concept, the blocked wedge mechanism of 

Tyr-573 can be the reason for the decreased rate of the recovery step in MgADP.Pi. 

However, this hypothesis requires experimental validation. 

 Nevertheless, scheme 8 shows the kinetic model of the acto-myosin interaction 

(19). Step 0 is the formation of the initial collision complex that is followed by a 

series of conformational changes (step 1 and 2). The collision complex formation is 

strongly influenced by the ionic strength, as it is driven by charge-charge interactions 

between actin and some of the actin binding surface loops of myosin (18). The next 

conformational change results in the so-called weak binding acto-myosin complex 

(state 3 in Lymn-Taylor model, A-state in scheme 8). The interaction between actin 

and myosin in this 

state is very weak 

(Kd=50uM), since 

Figure 30. Action of Tyr-573 during the recovery step and after ATP hydrolysis. A and B 
parts of the figure are the pre- and post-recovery conformations of the Dictyostelium 
myosin II motor domain. (PDB code: 1MMA, 1VOM, respectively). During the recovery 
step Tyr-573 wedges against the relay helix and the SH helix. Based on molecular 
dynamics simulation of an ADP.Pi containing post-recovery structure, Asn-475 rotates due 
to hydrolysis (black arrow in part B) and makes a hydrogen bond with Tyr-573 (46).  

 
 
Scheme 8. Kinetic scheme of actin binding (19). 
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there is ADP.Pi in the nucleotide binding pocket. Because the existing structural data 

is very limited on this state, mainly mutational studies mapped which surface loops 

are involved in these interactions (28, 67). A computational rigid docking study was 

recently published that shows an exact actin binding surface of myosin with opened 

cleft (67) (see Chapter 4). Additionally, this state is also hardly investigable 

kinetically because the stable production of the acto-MgM.ADP.Pi ternary complex 

requires extreme concentrations (100 μM actin and 100 mM Pi). Otherwise, the weak 

interaction appears just transiently, since the next conformational transition in scheme 

8 (K2) leads immediately to Pi release and to strong acto-myosin interaction (step 4 in 

Lymn-Taylor model, R-state in scheme 8). These are responsible for the fact that this 

weakly interacting complex is the less discovered state in the Lynm-Taylor model.  

 

Aims 
 

Our aim was to investigate experimentally the role of Tyr-573 in slowing 

down the rate of the lever arm movement in ADP.Pi (reverse recovery step), to allow 

the fast actin rebinding to myosin having primed lever arm. We introduced a mutation 

into the MW501+ construct by mutating the tyrosine to phenylalanine at this position. 

This mutation inhibits very specifically the hydrogen bond mediated interactions of 

this residue. In the pre-recovery state this forms a hydrogen bond with Glu-683 (SH1 

helix). This bond breaks during the recovery step and Tyr-573 rotates toward the 

nucleotide binding site to form its supposed post-hydrolytic interaction with Asn-475 

(46). This later interaction is also inhibited by the elimination of the hydroxyl group.  

By the use of Trp-501 fluorescence we are able to follow the lever arm 

movement in MgATP and MgADP.Pi and to detect the effects of the mutation on 

these steps. Naturally, the effect of the mutation should be very specific, otherwise the 

right interpretation of the data is almost impossible. 
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Results 

Steady-state fluorescence Trp-501 in MY573F 

 
In order to analyze the 

effects of the mutation on the 

conformations of the lever arm, we 

measured the steady-state 

fluorescence emission spectra of 

Trp-501 in MY573F at 20 °C in the 

presence of different nucleotides 

and compared them to that of 

MW501+ (Figure 31). In the absence 

of nucleotide the emission spectra 

of the mutant and the wild type are 

very similar (emission maximum at 

343 nm and 342 nm of MY573F and 

MW501+, respectively). Upon MgADP binding both constructs show 17% quench and 2 

nm blue shift, indicating that the mutation has no effect on the pre-recovery 

conformation. The binding of the MgADP.Pi analogue MgADP.AlF4, which induces 

the high fluorescence post-recovery state of MW501+, results in 130% higher 

fluorescence intensity than that of the pre-recovery MgADP-bound state. In the case 

of the MW501+.MgADP.AlF4 this increase is 120%, and the spectrum has the same 

emission maximum as in case of the mutant (335 nm), indicating that the mutation 

does not have an effect on the primed lever arm conformation either. In contrast, the 

MgATP-induced fluorescence enhancement of the MY573F is significantly smaller 

(55% compared to the MgADP state) than that of the MW501+ (100%). In MW501+ the 

MgATP-bound myosin is an equilibrium mixture of the low (pre-recovery) and the 

high (post-recovery) fluorescent states and this is presumably also valid for the 

mutant. Thus, the lower fluorescence of the MY573F.MgATP complex might be caused 

by the more populated low fluorescent M†MgATP state, which is most likely due to 

the shifted equilibrium constant of the recovery step or the hydrolysis step.  

 

 
Figure 31. Fluorescence emission spectra of 3 
μM MY573F in the absence (—) and in the 
presence of 0.5 mM MgADP (◦◦◦), or 0.5 mM 
MgATP (•••), or MgADP.AlF4 (---) at 20 °C. 
Tryptophan was excited at 297 nm. All of them 
have the same intensity as MW501+, except the 
MgATP bound, which has lower fluorescence. 
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Transient kinetic characterization of the lever arm movement of MY573F  in ATP and 
ADP.Pi 
 

The kinetics of MgADP binding to MY573F (Step 1 and 2 in Sceme 7) can be 

characterized by following the fluorescence signal of Trp-501 in stopped-flow device 

(see also Chapter 2). At 20 °C, the fluorescence quench induced by MgADP binding 

under pseudo first-order conditions could be fitted with a single exponential function. 

The MgADP concentration dependence of the observed rate constant shows two-step-

binding kinetics of an induced-fit mechanism 16.  The second order rate constant of 

MgADP binding to MY573F is the same as in the case of the wild type (Table 7) (1.7 

μM-1s-1 and 1.5 μM-1s-1 of MY573F and MW501+, respectively), however, k+2 of the mutant 

is a bit slower (Table 7). We also measured the MgADP off-rate of MY573F (koff 

MgADP=2 s-1) by MgADP chasing 

experiment, which is 

approximately two-times slower 

than that of the wild type (koff 

MgADP=5 s-1). 
 At 20 °C, MgATP binding 

to MY573F is accompanied by the 

same fluorescence quench as 

MgADP binding, but now it is 

followed by the fluorescence 

enhancement coupled with the 

recovery step (Figure 32). The 

subsequent fluorescence enhancement has only a single phase with an observed rate 6 

s-1. On the contrary, the fluorescence enhancement of MW501+ upon ATP binding has 

two phases (Figure 24D). The fast phase is the recovery step (>150 s-1), which is 

followed by a slower phase corresponding to the hydrolysis step 

(kobs=(K3a/(1+K3a))xk3b+k-3b=25 s-1). 

 We also measured the kinetics of the reverse recovery step, the lever arm 

movement in ADP.Pi. MY573F pre-incubated with ADP was mixed with Pi in stopped-

flow 17 A small fluorescence enhancement could be observed upon Pi binding to 

MY573FMgADP, just like in the case of MW501+, however with a smaller amplitude. 

This might be the consequence of a bigger K4 than in the MW501+ (note that 

 
Figure 32. Stopped-flow record of the reaction 
of MY573F (1.5 μM) and MgATP (1 mM). The 
fluorescence change has two phases, an initial 
quench, which is the binding (kobs=250 s-1), and a 
fluorescence enhancement with an observed rate 
6 s-1
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K4=M†.MgADP.Pi/M*.MgADP.Pi). The single exponential fitted to the record shows 

that the observed rate of the transition is faster than in the wild type (0.3 s-1 and 0.2 s-1 

of MY573F and MW501+ respectively). 

______________________________ 
16 Since these experiments are carried out by László Végner, I do not present the figures of 
these experiemnts. 
17 Because of the high ionic strength of 25 mM Pi less NaCl was added to the Pi buffer in order 
to keep the ionic strength constant (see Materials and Methods). Then, before measurement 
the buffer was autoclaved at 120 ˚C to eliminate the pyrophosphate contamination that 
inhibits Pi binding to myosin (27). 

Since the turnover rate of the enzyme cycle of MW501+ is equal with the 

forward rate of the reverse recovery step in MgADP.Pi, we also measured the turnover 

rate of MY573F with a multiple turnover experiment. MY573F was mixed with MgATP, 

being 5 fold molar excess and Trp-501 fluorescence was followed. When all the 

MgATP was hydrolyzed the fluorescence was dropped down to the fluorescence level 

of the MgADP-bound form 18. The calculated turnover rate is 0.28 s-1, which is 6 

times faster than that of the wild type (58), and almost equal with the calculated rate 

of k+4 from the Pi binding of the MY573F. MgADP.   

 

Characterization of the ATP hydrolysis step of MY573F 
 

The hydrolytic activity of MY573F was determined by quenched-flow multiple 

turnover experiments using 32P-labeled ATP (Figure 33).  An initial burst phase of the Pi 

production was detected followed by a steady-state phase similar to the wild type. The 

amplitude of the burst phase gives the steady-state ratio of the pre- and the post-

hydrolytic states, so the apparent equilibrium constant of the hydrolysis step 

(appKhydrolysis= M*.MgADP.Pi/(M†.MgATP+M*.MgATP)). The amplitude of the burst 

phase of MY573F is 0.3 Pi/motor domain, the same as that of the MW501+, and thus their 
appKhydrolysis are also the same (Table 7). The fitted exponential on the burst phase 

shows that the observed rate of the Pi burst is slower than in MW501+ (kobserved hydrolysis 6 

s-1 and 25 s-1 of MY573F and MW501+ respectively), and its observed rate constant is 

identical to the rate constants of the ATP induced fluorescence enhancement. As it 

was mentioned in the previous chapter, in MW501+ the second phase of the fluorescence 

enhancement has the same rate constant as the observed rate constant of the Pi burst. 

However, the equilibrium constant of the recovery step (K3a) influences the rate of the 
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forward reaction of the hydrolysis step (kobs=(K3a/(1+K3a))xk3b+k-3b=25 s-1). 

Consequently, the lower the K3a, the slower the observed rate of the hydrolysis step. A 

further scenario that explains the slower observed hydrolysis rate is that the recovery 

step determines directly the observed rate of the hydrolysis and the subsequent 

hydrolysis is faster. Since the fast phase of the fluorescence enhancement in MY573F  

________________________ 
18 Since MY573F is not saturated with MgADP in the presence of 15 μM MgADP, its 
fluorescence level is indeed between the fluorescence level of the apo and MgADP-bound 
forms.  
cannot be detected, this scenario cannot be excluded. The steady-state phase, 

corresponding to the turnover rate of 
the enzyme cycle (k4+ in Scheme 7), 
is faster in the mutant, being in line 
with the previously determined 
activity of MY573F.  

 

Determination of K3a and K3b of 
MY573F  

 

Based on the Trp-501 

fluorescence and quench-flow 

experiments we can state that the 

mutation does not change basically 

the enzyme cycle of myosin 

represented by Scheme 7, similarly to 

the other relay mutants presented in 

Chapter 2. Moreover, the Y573F mutation does not even perturb the conformations of 

the relay region. However, the apparent equilibrium constant of the recovery step 

shows significant change. The ratio of the high and low fluorescent states gives 
appKrecovery-step=M*(total)/M†.ADP, which can be calculated by the steady-state 

fluorescence emission spectra: M†=(FMgADP.AlF4-FATP)/(FMgADP.AlF4-FMgADP) and 

(M*(total)=(FMgATP-FMgADP)/(FMgADP.AlF4-FMgADP), where F is the fluorescence intensities 

at the emission maximums. appKrecovery-step of MY573F  is 0.68, which is 7.8 times smaller 

than that of MW501+ (5.3). Since the quench-flow experiment determines the steady-

state fraction of the M*.MgADP.Pi state, the steady-state ratio of the three populated 

states (M†.MgATP, M*.MgATP and M*.MgADP.Pi) are known: 

M*.MgATP=M*(total)-M*.MgADP.Pi. Interestingly, M*(total) (40%) is almost equal 

 
Figure 33. Phosphate production of MY573F . 
20 μM motor domains and 160 μM γ32P-ATP 
were rapidly mixed by quench-flow at 20˚C. 
The time course shows an initial burst phase 
followed by a steady-state phase. The relative 
amplitude of the burst phase is 0.4. Kinetic 
data are presented in Table 7. 
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with M*.MgADP.Pi (43%), which means that the steady-state fraction of M*.MgATP 

is undetectably small. Based on these findings, the equilibrium constants of the 

recovery step (K3a) and the hydrolysis step (K3b) can only be estimated (Table 7). For 

K3a the upper limit is around the error of the measurement (K3a<0.1), which means it 

bears a large perturbation, as it is almost 30 times smaller than in the MW501+. On the 

contrary, the mutation does not lower the amplitude of the Pi bursts. Consequently, 

K3b of MY573F deviates significantly from that of the MW501+, since a much bigger K3b 

(M*.MgADP.Pi /M*.MgATP) has to compensate the much less M*.MgATP in order 

to produce the same amount of M*.MgADP.Pi. According to this, K3b of MY573F is at 

least 5.7, which is 10 times bigger than that of the MW501+. 

 

Discussion 

 
Our recent kinetic investigation proved that the rate limiting step of the basal 

ATP-ase cycle of Dictyostelium myosin II is the reverse recovery step in MgADP.Pi 

(27). Consequently, the observed rate of this lever arm movement is slower with four 

orders of magnitude than the recovery step in MgATP. This means that, hydrolysis 

somehow lowers the rate of the lever arm movement. However, there is only a single 

molecular dynamics simulation that reveals the existence of a hydrolysis sensing 

conformational change in the nucleotide binding site (46). According to this model, 

the Tyr-573 is wedging against the relay helix during the recovery step in MgATP but 

its wedge action is blocked by a hydrogen bond (between Tyr-573 and Asn-475) after 

the hydrolysis. We introduced the Y573F mutation into the MW501+ construct in order 

to inhibit the hydrogen bond mediated interactions of this residue. In the pre-recovery 

state, Tyr-573 forms a hydrogen bond with Glu-683 (SH1 helix), which breaks during 

the recovery step and Tyr-573 rotates toward the nucleotide binding site to form its 

supposed post-hydrolytic hydrogen bond with Asn-475 (46). 

 If this structural model is right, we expect that the elimination of the pre-

recovery hydrogen bond perturbs the wedge action of the tyrosine during the recovery 

step in MgATP. The lack of this interaction between Glu-683 and Tyr-573 might have 

the consequence that Tyr-573 is not coordinated properly and situated in a different 

position, which makes it dysfunctional. Alternatively, the role of this interaction is not 

just the coordination of the tyrosine, but also the mediation of a conformational 
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change from one site to the other. The importance of the interaction between the 

wedge loop and the SH1 helix is also implied by the fact that in myosin V and VI, in 

which this residue is not tyrosine but phenylalanine, the lack of the hydrogen bond 

mediated interaction between Glu-683 and Tyr-573 is recovered by a hydrophobic 

interaction between these residues. However, in myosin II the SH1 helix is too far 

from the phenyl ring of the phenylalanine to make such an interaction. Nevertheless, 

we expect that during the recovery step the mutation mimics the blocked wedge 

mechanism of Tyr-573 in MgADP.Pi by perturbing the wedge action of the tyrosine 

and hence, it should decrease the rate of the recovery step inMg ATP.  

Furthermore, the mutation also is supposed to demolish the post-hydrolytic 

interaction of Tyr-573 and Asn-475, which releases the tyrosine from its post-

hydrolytic blocked state. This should mimic the recovery step in MgATP, if the 

phenylalanine is functional to some extent. Consequently, the rate of the lever arm 

movement in MgADP.Pi should be increased in the mutant. 

  By using Trp-501 fluorescence, we judged that the Y573F mutation does 

affect neither the pre-recovery nor the post-recovery structure of the lever arm, 

because both the MgADP and MgADP.AlF4-bound states have the same fluorescence 

as the wild type. However, the equilibrium constant of the recovery step is so 

dramatically suppressed (K3a=2.7 and <0.1 in MW501+ and MY573F respectively) as the 

steady-state fraction of M*MgATP can not be detected. Regardless of this fact, the 

amplitude of the burst of the hydrolytic Pi production in MY573F is equal with that of 

the wild type. Consequently the mutation also affects the equilibrium constant of the 

hydrolysis step (K3b=0.55 and <5.7 in MW501+ and MY573F, respectively). The fact that 

the hydrolysis is also perturbed by the mutation supports the concept that Tyr-573 has 

a role in the nucleotide binding site in the post-recovery state. The lack of its hydroxyl 

group might influence the state of switch 2 or Asn-475, which push the equilibrium of 

the hydrolysis toward the M*MgADP.Pi state. 

 Unfortunately, the kinetics of the recovery step in MgATP cannot be 

investigated directly, since the equilibrium constant of the recovery step is too small. 

However, the fact that K3a decreased almost 30 times in the mutant indicates that the 

ratio of the forward and reverse rate of the recovery step is dramatically changed 

(K=kforward/kreverse). We can only estimate the lower limit of the observed rate of the 

recovery step to be 6 s-1, since this is the observed rate of the subsequent hydrolysis 

step. If the observed rate of the recovery step is 6 s-1, the hydrolysis can be the faster 



                                                                                  PhD Thesis – Bálint Kintses 

70 

step. Since kobserved 3a=kforward+kreverse>6s-1 and K3a=kforward/kreverse<0.1 in MY573F, the 

lower limit of kforward and kreverse are 0.5 s-1 and 5.5 s-1, respectively. However, if the 

recovery step is faster than the hydrolysis step, the dramatic reduction of K3a is also 

able to decrease the observed rate of the hydrolysis step, as it was demonstrated 

previously (57), since kobserved hydrolysis=K3a/(1+K3a)xk3b++k3b-. An upper limit, however, 

for the observed rate of the recovery step cannot be determined. Furthermore, the 

turnover rate, so the rate of the reverse recovery step of the MY573F is increased 6 

times compared to MW501+, and K4 is decreased. 

 Consequently, the mutation specifically perturbs the energetics of the recovery 

step and the hydrolysis step. However, the effect of the mutation on the rate of the 

recovery step cannot be determined, since the small K3a does not allow the 

investigation of the kinetics of the recovery step. In spite of the perturbed energetics 

of the recovery step and hydrolysis steps is a good indication of the supposed action 

of the Tyr-573 (46), we cannot prove directly that the different behavior of Tyr-573 

during the lever arm movement in MgATP and MgADP.Pi is what causes the large 

difference in the kinetics of the two steps.  

According to the presented models, the maximization of the chance that actin 

rebinds to myosin having primed lever arm and MgADP.Pi in the nucleotide binding 

site is due to a complex bidirectional communication between the nucleotide binding 

site and the lever arm. First, the switch 2 closer is coupled to the priming of the lever 

arm. If the lever arm is primed, MgATP can be hydrolyzed, but hydrolysis affects the 

conformation of the switch 2 loop and its surroundings, which dramatically lowers the 

rate of the lever arm movement, in order to let actin bind back with a great chance to 

myosin being in the proper state.    

The other consequence of the fact that the rate limiting step of the basal ATP-

ase cycle of Dictyostelium myosin II is the reverse recovery step in MgADP.Pi is that, 

actin has to activate the rate of the lever arm movement during the actin activated 

ATP-ase cycle. Chapter 4 below presents our new model on this activation.  
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Chapter 4 

 

Step 4 - Communication path from the actin binding region toward 
the lever arm 

 

Introduction 
 

In step 4 of the Lymn-Taylor model the weak-to-strong transition of actin 

binding (K2 in scheme 8), leading to the strongly-bound rigor state (R-state in scheme 

8) (19), induces the power stroke and the hydrolytic products release. Today, this step 

remains the less understood one. The exact sequence of the reaction steps and the 

structural changes are not unambiguous, because the mechanical events are not really 

integrated into the biochemical reaction steps (73). 

The major conformational change that can be observed during the weak-to-

strong transition of actin binding is the actin binding cleft closure between the lower 

and upper 50 kDa subdomains, as it was first proposed many years ago (70). The apo 

structure of myosin V performing closed cleft fits perfectly into the cryo-filtered 

electron microscopic envelop of the actin filament “decorated” with strongly bound 

myosin heads (36). Consequently, when the cleft is closed the acto-myosin interaction 

is strong (Kd<0.1 μM) 

 
 
Scheme 8. Kinetic scheme of actin binding (19). 
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and when it is opened the interaction is weak (Kd=50 μM). Since cleft movement is an 

equilibrium step (K2 in Scheme 8), the equilibrium constant of this transition 

determines the actual actin affinity of myosin, which varies significantly in different 

nucleotides. If the acto-myosin interaction is strong, K2 is pushed predominantly 

toward the R-state (K2>100), such as in nucleotide absence, while in weak interaction 

(MgATP state) K2 is absolutely pushed to the A-state (K2<<1) (19). In MgADP and 

MgADP.Pi K2 is thought to be intermediate however, in case of MgADP.Pi the 

concepts are controversial (18, 46, 71).  

 Nevertheless, the apo structures suggest that cleft closure might be the 

consequence of the rotation of the upper 50 kDa subdomain, which is accompanied by 

the torsion of the core β-sheet (13, 71). The strands that carry switch 1 and 2 bear the 

greatest conformational change upon β-sheet twist, resulting in the opening of the 

nucleotide binding pocket (Figure 34) (13). As presented in Chapter 1, the equilibrium 

constant between the two states of switch 1 is strongly coupled with that of the actin 

binding cleft, explaining the nucleotide controlled acto-myosin interaction (41). 

Accordingly, the same coupling is responsible for the accelerated product release 

steps upon actin binding. The opening of switch 1 creates an exit route known as the 

“backdoor” for Pi release (83). Furthermore, switch 2 opening might be able to trigger 

the power stroke by pushing back the N-terminal end of the relay helix into its pre-

recovery conformation, since the closer of switch 2 induces the priming of the lever 

 

 
Figure 34. The presupposed conformational cascade during the weak-to-strong transition 
of actin binding to the myosin having primed lever arm. Actin binding cleft closure causes 
the torsion of the central B-sheet, especially those strands that carry switch 1 and switch 2, 
leading to the opening of the nucleotide binding site. While switch 1 opening is believed to 
result in the opening of the ‘backdoor’, leading to Pi release, switch 2 opening might 
induce the power stroke (13, 35).   
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arm (see Chapter 2). According to this structural model, the closing of the actin 

binding cleft opens the nucleotide binding pocket, which is likely to be followed by 

immediate Pi release, and at the same time the power stroke is also induced (37, 71, 

81, 83). On the contrary, growing evidence from muscle fiber and single molecule 

experiments reveal that the power stroke happens first and then follows the Pi release 

step.  

Many years ago, Huxley and Simmons found during their pioneering work that 

psoas muscle fibers respond to rapid length steps by a force-generating process with 

multi exponential decay. A fast phase (kobs=1000s-1) of this response (phase 2) was 

later identified as the power stroke of the actin-bound myosin (39, 53). Furthermore, a 

slower phase (phase 4) is found to be closely associated with Pi release step, as this 

step is the most sensitive to the presence of Pi (69).  These findings make the basis of 

a recently produced kinetic model, stating that the power stroke is likely to precede 

the Pi release step (73, 74, 77, 85) (Scheme 9). However, direct evidence has not been 

found (15).  

Nevertheless, the question arises, if the power stroke happens first and then the 

Pi release, how can actin trigger the power stroke without primary nucleotide binding 

site opening. The closed switch 1 and 2 are likely to be necessary to hold the Pi in the 

nucleotide binding site. And where does the conformational change, inducing the 

power stroke, come from? The response to this might reveal a direct communication 

pathway between the actin binding site and the relay helix.  

 Recently we 

found that the rate 

limiting step of the 

basal ATP-ase cycle 

of Dictyostelium 

myosin II is a lever 

arm swing in 

MgADP.Pi (the 

forward reaction of 

the reverse recovery 

step in Scheme 7 

(27)) and not the Pi release step (37).  Since the rate limiting step of the actin activated 

enzyme cycle is faster with two orders of magnitude, the rate of this lever arm 

 
 
Scheme 9. Actin rebinding to myosin having primed lever 
arm (*), leading to the rigor acto-myosin complex (steps 3, 
4 in the Lymn-Taylor model). † and * correspond to the low 
and high fluorescent states of Trp-501 and to the lever arm up and 
down states respectively. Muscle fiber and single molecule 
experiments reveal that the power stroke precedes Pi release 
in myosin II (74, 85). 
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movement has to be accelerated by actin binding. But it is still a question how actin 

can accelerate the rate of the reverse recovery step in MgADP.Pi. 

 
 

Aims 
 

The integration of the mechanical step into the structural model is in 

contradiction with the muscle fiber kinetics (85). The weak-to-strong transition of 

actin binding can hardly induce the power stroke before Pi release according to the 

accepted structural models. However, our structural and kinetic understanding of the 

lever arm movement has improved in recent years (see Chapter 2 and (27)). These 

findings prompted us to reinvestigate the concept on actin activation in order to build 

a structural model that fits into the kinetic data derived from muscle fiber and single 

molecule experiments (74).   

 

Results 

A structural model for the activation of the power stroke 
 

As it was presented in Chapter 2, a potential structural trajectory between the 

end states of the recovery step was composed by using computational simulation (16). 

In this transition the relay helix moves in a seesaw-like fashion, coupling switch 2 

closure with the rotation of the lever-arm. When switch 2 closes, it pulls down the 

relay helix near to its N-terminal end through a hydrogen bond between Gly-457 and 

Asn-475 (Figure 20). The relay helix reacts as a seesaw, since it is supported at the 

middle, and its C-terminal end swings upwards. 

 By comparing the pre- and post-recovery structures, we found that when 

switch 2 closure pulls down the N-terminal region of the relay helix, the helix situated 

at the opposite side of the relay (in relation to switch 2) moves together with the relay 

helix (Figure 35). This helix is the N-terminal helix in the so-called helix-loop-helix 

motif, which is the main actin binding region of the lower 50 kDa subdomain (18). 

This helix is disrupted by an additional loop called proline-rich loop, which is the 

edge of the actin binding surface (36).  
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The relay helix and the N-terminal helix of the helix-loop-helix motif interact 

through extensive hydrophobic interactions (Figure 36, such as between Tyr-473/Ile-

417, Glu-476/Ile-514). Those residues that transmit the movement between the two 

helixes are located half turn away from Asn-475 (Tyr-473, Lys-477). Consequently, 

certain parts of this helix, such as the prolin-rich loop move almost as much as the N-

terminal of the relay helix at position 475 (1-1.5 Å) during the recovery step. The 

importance of the connection between the two helixes is revealed by the fact that the 

residues are highly conserved. Residues between the positions 475 and 478 (NEKL) 

are essential in all myosin isoforms, as are a couple of other conserved hydrophobic 

residues (Ile-514, Ile-517). 

 The coupled movement of the two helixes during the forward direction of the 

recovery step reveals that they might move together in the reverse direction as well. 

Consequently, in the post-recovery or pre-power stroke state a pull on the proline-rich 

loop from the 

opposite direction of 

switch 2 closure 

would be able to 

pull back the N-

terminal segment of 

the relay helix to its 

pre-recovery 

position (Figure 36, 

red arrow), which is 

thought to lead to 

the rotation of the 

lever arm. The 

question arises 

whether actin binding is able to make the appropriate pull on the prolin-rich loop in 

order to accelerate the reverse recovery step.  

 In order to investigate experimentally the role of the proline-rich loop in actin 

binding and in the activation of the rate of the lever arm movement, we introduced 

mutations into the MW501+ construct, which perturbed the role of the proline-rich loop. 

Since the majority of the mutational experiments in this project are not my own work, 

I wrote these results into the discussion section.    

 
Figure 35. Pre- (blue) and post-recovery (green) structures of 
the relay region aligned to each other (PDB code: 1MMD and 
IVOM respectively). Switch 2 closure pulls done not just the N-
terminal of the relay region during the recovery step but the first 
helix of the helix-loop-helix motif containing the proline-rich 
loop.   
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Discussion 
 

Growing evidence from muscle fiber and single molecule experiments show 

that the power stroke happens first in the force generating acto-myosin complex and 

the Pi release step only follows it (39, 73, 74, 85). However, the current structural 

model induces the power stroke through the opening of the nucleotide binding site 

(13, 71), which is likely to be coupled with immediate Pi release.  Hence, our aim was 

to find a conformational change that induces the power stroke without primary 

nucleotide binding site opening. Consequently, this conformational change must be a 

direct communication pathway between the actin binding region and the lever arm.  

Holmes et al. suggested that the central β-sheet torsion displaces the 

phenylalanine fulcrum of the relay helix at the third strand (numbering from the N-

terminal subdomain) (see Chapter 2), thus allowing the relay helix to straighten and 

the lever arm to return to the pre-recovery position without primary switch 2 opening 

(22, 36). However, the β-sheet torsion of myosin V does not show any conformational 

change of this strand (13), and our experimental results show that the eliminated relay 

 
Figure 36. The activation of the power stroke through the proline-rich loop. A pull on 
the proline-rich loop from the direction opposite of switch 2 closure (red arrow) might lift 
back the relay helix N-terminal region into its pre-recovery position, leading to the power 
stroke. The proline-rich loop and the relay helix move together due to hydrophobic 
interactions, such as between Tyr-473-Ile-517.  
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fulcrum does not inhibit the actin activation of the lever arm movement (see Chapter 2 

and (43)).  

Alternatively, the opening of switch 1 and 2 is followed by a slow Pi release 

step and a much faster power stroke. This would manifest in an observed subsequent 

Pi release, although the nucleotide binding site opening occurs first and then the power 

stroke (76). In that case, the direct communication between the actin binding site and 

the lever arm is needless. However, from a totally opened nucleotide binding site Pi 

release is likely to be a diffusion-limited process, except if the Pi group is still buried 

and inhibited in its release. In spite of the fact that we still do not know the structure 

of the open nucleotide binding site in the acto-myosin complex, the opened switch 1 

in the rigor-like structure creates an exit route for the Pi (83), contradicting this 

concept. Nevertheless, direct evidence for the order of the two steps and their relative 

rates has not been found. 

Upon comparing the pre- and post-recovery structures of the Dictyostelium 

myosin II motor domain, we found that when switch 2 closes the helix-loop-helix 

motif, and particularly the proline-rich loop, move together with the N-terminal of the 

relay helix. We suppose that this proline-rich loop is the nearest actin binding site to 

the relay region (36) and an actin induced pull from the opposite direction of switch 2 

closure on this loop can initiate the power stroke, without previous nucleotide binding 

site opening. 

In order to investigate experimentally the role of the proline-rich loop in the 

activation of the lever arm movement, we made two mutant constructs in MW501+. The 

prolin-rich loop seems to have two functional parts. These are a conserved positive 

charge at the tip of the loop on the one hand  and  at least 1 or 2 hydrophobic residues 

in it, depending on the myosin isoform, on the other hand. Based on this, we replaced 

the positive charge to a negative one in one construct (R520Q, M R520Q) and we 

deleted the whole proline-rich loop in the other one (519-523, MΔ proline-rich loop). We 

designed the later construct with great care by using protein homology modeling. The 

most important requirement was not to perturb the other actin binding regions of the 

helix-loop-helix motif, otherwise we could not have distinguished which effect can be 

assigned to which region. This mutant contains a continuous helix in place of the 

helix-breaking proline-rich loop according to the computational modeling. 

Both constructs show very specific changes (experimental results not shown). 

The Trp-501 signal shows that the nucleotide binding steps and the lever arm 
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movements in the 

absence of actin 

are not perturbed 

by the mutations. 

The lever arm can 

be primed like in 

the wild-type and 

the forward rate of 

the reverse 

recovery step in 

MgADP.Pi (the 

turnover rate) is 

also the same as 

that of the wild 

type. Furthermore, 

the mutations have 

some moderate 

effect on actin 

binding, proving 

that the proline-

rich loop is a real 

actin binding loop. 

However, the 

mutations do not 

perturb the basic 

mechanism of 

actin binding. The 

main perturbation caused by the mutations is the total abolishment of the actin 

activation of the ATP-ase cycle. Since the actin activated turnover rate of the mutant 

is slower with at least two orders of magnitude than that of the MW501+, this effect can 

not be explained by the small reduction in actin affinity, indicating that there must be 

a further function that is “knocked out”, confirming the supposed role for the prolin-

rich loop.   

 
Figure 37. Computational docking structure of the weakly (A) and 
strongly (B) bound acto-myosin complex with open and closed 
actin binding cleft respectively. Figure A shows an illustration of 
the published structure (68) with Dictyostelium myosin II structure 
having primed lever arm and open actin binding cleft. Figure B 
shows the rigor acto-myosin structure of the chicken skeletal 
myosin II having closed actin binding cleft (36). During the 
transition from the structure presented in part A to that in B, the 
power stroke and the weak-to-strong transition of actin binding 
have to occur (black arrows). The proline-rich loop and the helix-
loop-helix motif bind to the actin surface in a different position. In 
the weak binding complex a hydrophobic triplet (spacefill) in 
the loop region between the two helixes of the helix-loop-
helix binds to hydrophobic residues (Ile-341, Ile-345) on actin 
surface 5 Å away from its binding site in the rigor complex 
(Ile-345, Leu-349).  
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Other results also support that the proline-rich loop is an actin binding site (36, 

45, 67, 68). Myosin II structures having open and closed actin binding clefts were 

fitted onto the surface of three actin monomers by in silico rigid docking (36, 68). In 

spite of the fact that these docking experiments neglect the conformational changes 

derived from the interaction itself, they show us a possible binding surface for the 

weakly and strongly interacting complexes. Onishi and Morales found that the major 

difference between them is in the position of the lower 50 kDa subdomain on the first 

actin monomer however, the upper 50 kDa subdomain binds to the same region (68) 

(Figure 37). Since the primary actin binding site of the lower 50 kDa subdomain is the 

helix-loop-helix motif (510-546) (18), this region also changes its position on the 

actin surface. In the weak binding state, the edge of the helix-loop-helix motif binds 5 

Å away from its position in the strongly interacting complex. Consequently, the 

interactions of the proline-rich loop also change during the weak-to-strong transition. 

In the weak binding complex the proline-rich loop interacts only with the N-terminal 

region of actin (68), but in the strong binding complex it is allowed to interact with 

hydrophobic residues on the actin surface (Ile-349, Phe-352). The interaction with the 

negatively charged N-terminal actin region is performed by Arg-520, while the 

hydrophobic side-chains of the proline-rich loop interact with the hydrophobic 

residues of the actin surface.  

Due to the fact that the proline-rich loop and the relay helix move together, the 

conformational rearrangements of the actin binding region might induce a strain that 

lifts back the N-terminal segment of the relay region to its pre-recovery position, 

leading to the acceleration of the rate limiting reverse recovery step. Moreover, 

through the interaction of the Arg-520 and the N-terminal segment of actin, the relay 

helix might sense the presence of actin even in the weakly interacting complex. The 

R520Q mutation in itself abolishes the actin activation of the myosin ATP-ase cycle 

and a similar effect was found when an actin mutant without the interacting N-

terminal region was used (63).  

Accordingly, the direct communication between the actin binding region and 

the relay helix allows the acceleration of the rate of the reverse recovery step before Pi 

release, before or at the beginning of the reaction trajectory of the actin binding cleft 

closure. However, the intermediates of the transition are still not known.  

Nevertheless, in MgADP.Pi the actin binding of myosin is thought to be a fast 

step but the acto-myosin interaction is weak (85). If the Pi release is a later event of 
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the actin activated ATP-ase cycle, the power stroke must happen through weakly 

interacting states. It is an interesting question, how the priming of the lever arm, the 

recovery step, happens detached from actin, but the power stroke occurs in actin-

bound states, despite the fact that acto-myosin interaction in MgADP.Pi is as weak as 

in the MgATP-bound form. The answer to this question lies in kinetics. Scheme 10 

shows the presupposed reaction mechanism of the second half of the ATP-ase cycle 

(27). The modeling of this mechanism shows that the predominant reaction flux 

happens through the actin-bound route, even at low actin concentration (5 μM), 

despite the weak acto-myosin interaction in MgADP.Pi (Kd=50 μM). This is a 

consequence of the slow lever arm movement in MgADP.Pi, which is activated by 

actin to a much faster step (from 0.05 s-1 to at least 4 s-1). Consequently, the fast actin-

bound reaction pathway empties the M*MgADP.Pi population before significant futile 

lever arm movement happens through the detached route. Thus, the answer to the 

question why the lever arm movement happens detached from actin in ATP, but 

attached in MgADP.Pi, is that the rate of the lever arm movement in MgADP.Pi is 

activated by actin, while in MgATP it is not (27). 

 

 
 
Scheme 10. Actin activated ATP-ase cycle of myosin II. † and * correspond to the low 
and high fluorescent states of Trp-501.  
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Final Conclusion 
 

We used site-specific fluorescence signals placed in functional regions of 

Dictyostelium myosin II motor domain in combination with transient kinetic 

measurements. By the use of this technique we investigated the communication 

mechanisms of the nucleotide binding site, the actin binding region, and the lever arm 

of the myosin motor domain. These studies have a significant contribution to the 

understanding of the working of myosin. In this section it is presented how our results 

show the process of the ATP-ase cycle of myosin. 

The starting process is the MgATP binding to the acto-myosin complex that, 

accompanied by a large free energy change, is driving forward the ATP-ase cycle (2). 

The first MgATP-induced conformational change is the open-closed transition of 

switch 1 loop in the nucleotide binding site (41). Since switch 1 loop is a hinge region 

between the lower and upper 50 kDa subdomains, its closure is coupled with the 

opening of the actin binding cleft, resulting in low actin affinity and acto-myosin 

dissociation (9, 33, 41, 71). The subsequent MgATP-induced conformational change 

is the open-closed transition of switch 2, which is coupled with the priming of the 

lever arm. This step is a fast equilibrium step (56). The conformational change of 

switch 2 closure is transmitted toward the lever arm by the seesaw-like movement of 

the relay helix, which is converted to a rotating movement by the converter domain 

(16, 43). Myosin with closed switch 2 is the catalytically active conformation, which 

inhibits the wasteful ATP hydrolysis without force generation (32). The hydrolysis 

must be accompanied by a conformational change, turning the lever arm movement in 

MgADP.Pi to a slow equilibrium step (27). However, the hydrolysis dependent 
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change of the nucleotide binding site is not really understood. The slow lever arm 

movement in MgADP.Pi allows actin to rebind to the myosin with primed lever arm 

(27). Since the acto-myosin interaction is a fast but weak process in MgADP.Pi, actin 

has to activate the rate of the ATP-ase cycle to make the actin-bound reaction path 

dominant (27). Since the rate limiting step is the forward direction of the reverse 

recovery step, actin has to activate the rate of the lever arm movement (27), but it has 

to do this without primary nucleotide binding site opening and Pi release (39, 73, 74, 

85). This means that the power stroke has to be induced before the weak-to-strong 

transition of actin binding, which opens switch 1 loop (41). Consequently, a direct 

communication pathway is required between the actin binding region and the lever 

arm (43). Our results show that an actin-induced pull on the proline-rich loop is able 

to activate the rate of the lever arm movement without primary Pi release by lifting 

back the relay seesaw. The subsequent weak-to-strong transition of actin binding 

results in hydrolytic product release and the formation of the starting rigor acto-

myosin complex (33).               
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Material and Methods 
 

All chemical reagents were purchased from Sigma-Aldrich Chemical Co. (St. 

Louis, MO), except for the nucleotides (Roche Co., USA), the γ32P-ATP (Izinta Ltd., 

Hungary), and the 3’-(N-methyl-anthraniloyl)-2’-deoxy-ATP (Jena Bioscience 

GmbH, Germany).  

Protein engineering: All mutations were introduced into mutated forms of the 

Dictyostelium discoideum myosin II motor domain M761 cDNA fragment containing 

a C-terminal His-Tag (58). F239W (MW239+) and F242W (MW242+) mutations were 

introduced by megaprimer-based PCR strategy into the tryptophan null mutant M761 

fragment (W36F, W432F, W501F, W584F) published previously (58). F481A,F482A, 

F652A, Y573F, R520Q, deletion of 519-523 (proline-rich loop deletion mutant)  

mutations were introduced into single tryptophan containing MW501+ (W36F, W432F, 

W584F) motor domain construct (58) with the same strategy. The mutant PCR 

products were ligated into pDXA-3H extrachromosomal shuttle vector containing one 

of the mentioned open reading frame of the M761 fragments (60). DH5 α E. coli 

strain was used to amplify the plasmids. Plasmids were isolated with QIAprep spin 

miniprep kit (Qiagen) and were electroporated into Dictyostelium discoideum AX2-

ORF+ cells.  

 

Protein expression and purification:  AX2-ORF+ cells were cultured in 20 ml HL5 

medium (ForMedium) containing 12.4 g/l glucose, 100 unit/ml penicillin, 0.1mg/ml 

streptomycin, and 15mg/l geneticin at 21 ˚C in cell culture dishes. Protein purification 

starts from 4 l 1x107 cell/ml cell culture, having grown for 1 weak in shacking 

incubator. Cells are harvested with 2700 rpm in a Beckman J2-MC centrifuge for 7 

min and washed (140 mM NaCl, 2.7 mM KCl, 10.1 mM Na2HPO4x7H2O, 18 mM 

KH2PO4, pH 7.3). Cells (40g) are lysated in 240 ml 50 mM Tis-HCl, 2 mM EDTA, 

0.2 mM EGTA, 5 mM benzamidine, 40 μg/ml PMSF, 3 DTT, 0.3V/V% triton pH 8.0 

by using an ultrasound sonicator for 10 min. After an 1 hour incubation on ice, the 

lysate is centrifuged with 50,000 rpm for 60 min at 4°C in a Beckman L7-65 

Ultracentrifuge. Pellet is homogenized in 100 ml 50 mM HEPES pH 7.3, 30 mM K-

acetate, 10 mM Mg-acetate, 5 mM benzamidine, and 40 μg/ml PMSF, and 3 mM β-

mercaptoethanol. The received solution is centrifuged again with 50,000 rpm for 45 

min at 4°C. Pellet is homogenized again in the previous buffer, but containing 
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additional 10 mM ATP and 10 mM MgCl2 and centrifuged again with 50,000 rpm for 

60 min at 4°C. The supernatant is purified by using His-tagged chromatography: 

loaded onto 15 ml Ni-NTA (Qiagen) column and washed with 50 ml 50 mM HEPES 

pH 7.3, 30 mM K-acetate, 3 mM β-mercaptoethanol, 5 mM benzamidine, 50 ml 50 

mM HEPES pH 7.3, 300 mM K-acetate, 3 mM β-mercaptoethanol, 5 mM 

benzamidine, ~80 ml 50 mM imidazol in first washing buffer (the exact required 

volume is monitored with Bredford reagent). The elution is done with 0.5 M imidazol 

pH 7.3 with 3 mM β-mercaptoethanol, 5 mM benzamidine. Preparations were 

dialyzed against an assay buffer (40 Mm NaCl, 20 mM HEPES, pH 7.3, 2 mM MgCl 

and 2mM mercaptoethanol) in which most of the experiments were performed, 

otherwise noted. Actin preparation and pyrene labeling were done as described in (11, 

82). 

 

Steady-state fluorescence measurements were carried out with a Fluoromax Spex-320 

fluorimeter equipped with a 150 W Xe lamp. The samples containing 3 μM motor 

domain constructs were excited at 295 nm with 2 nm bandwidth excitation and 

emission slits when tryptophan fluorescence was detected. The emission spectra of the 

fluorescence were detected in 310-420 nm range. During acrylamide quenching 

experiments the time courses of tryptophan fluorescence were detected at 340 nm and 

the 3 μM motor domains were titrated with acrylamide in a 0.05-0.4 mM 

concentration range.  The optical settings were the same when ATP hydrolysis 

activities of the motor domain constructs were measured following Trp fluorescence 

change: the running out of the five fold molar excess ATP decreases the fluorescence. 

If a mutant construct has the same fluorescence level when MgATP or MgADP binds 

to it, its activity was measured with pyruvate kinase (PK) lactate dehydrogenase 

(LDH) coupled assay described in the next paragraph. The temperature dependence of 

the fluorescence detected at 340 nm was measured by heating the sample from 6°C to 

26°C and the recorded fluorescence intensities were assigned to discreet temperature 

values. ADP.AlF4 and ADP.BeFx substrates were done by mixing the motor domain 

with 0.1 mM MgADP, 4 mM NaF, and 0.1 mM BeCl2 or AlCl3. 

    
Actin activated ATP-ase activities were determined by using pyruvate kinase (PK) 

lactate dehydrogenase (LDH) coupled assay. 2% LDH/PK, 1mM PEP, 1mM ATP, 

200 μM NADH was mixed with the 0.5 μM motor domain construct and titrated with 
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actin up to 100 μM  in a buffer containing 5mM HEPES pH 7.2, 1 mM MgCl, 1 mM 

KCl. The absorbance change was detected at 340 nm (decreasing NADH) in a 

Shimadzu UV-2101 PC photometer.  

 

Stopped-flow measurements were carried out on a BioLogic SFM-300/400 (BioLogic 

SAS, France) or on a KinTek SF-2004 (KinTec Corporation, USA) stopped-flow 

fluorimeter, equipped with 150 W Super-quiet Hg-Xe lamps (Hamamatsu Photonics, 

UK). Tryptophan was excited at 297 nm, where mercury lamps have an emission 

peak. Slits were 4 nm and a 340 nm interference filter (Corion CFS-001999 9L134) 

was used on the emission side. Pyrene was excited at 365 nm, the emission was 

detected through a WG420 cut-off filter (Comar Instruments, UK). Light scattering 

was measured at 340 nm. Mant-nucleotide was also excited at 365 nm and 

fluorescence was detected through the WG420 cut-off filter. During chasing 

experiment the mant-ADP (10 μM) preincubated with myosin was chased with ATP 

(1 mM). The dead time of the BioLogic stopped-flow is 0.2 and 2 ms if the μFC-08 

and the FC-15 cuvette is used, respectively, and that of the KinTec SF-2004 was 

determined to be 1ms, at 18ml/s flow-rate. All concentrations noted are post-mix 

concentrations, and all experiments were carried out at 20 °C, unless otherwise stated. 

 

Temperature-jump/stopped-flow measurements were carried out by using a 

temperature-jump accessory for a BioLogic SFM-300/400 stopped-flow (BioLogic 

SAS, France). 5 μM motor domain solution kept at 20 ˚C was mixed with hot ATP 

solution and Trp-501 fluorescence was measured at different temperatures up to 55 

˚C. The amplitude of the signal change lost in the dead time was determined by 

measuring the fluorescence level of the “apo” solution at each temperature. The 

principles of the method are described in the Appendix and in (42).  

 

Temperature-jump experiments were carried out by using a TJ-64 System (Hi-Tech 

Scientific, Salisbury, U.K.) as in (56), but fluorescence was detected through the 340 

nm interference filter. 

 

Quench-flow experiments were carried out by using γ32P-ATP radioactive nucleotide 

as a signal for the hydrolytic activity on a RQF-3 quench-flow apparatus (KinTec 

Corporation, USA). The ATP was applied in 5-10 fold molar excess in multiple 
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turnover experiments, and the hydrolyzed Pi was separated from the nucleotide by 

using coal solution as it is described in (86). The radioactivity of the γ32P hydrolytic 

product was measured with a Wallac 1409 Liquid Scintillation Counter (PerkinElmer, 

Inc, USA). The indicated concentrations are post-mix concentrations.  

 

Molecular dynamics simulations: InsightII 2000 software was used for generating the 

missing parts of 1MMD pre-recovery Dictyostelium myosin II motor domain 

structure. ADP.BeFx was replaced with ATP by changing the BeFx to Pi group. By 

averaging the coordinates of 125 structures picked up at each 2 ps time point of the 

equilibrium phase of the simulation, we visualized a relaxed conformation. For the 

post-recovery state, Jon Kull’s unpublished structure was used which has exactly the 

same conformation as 1VOM, but contains all the residues. The BeFx was also 

replaced by a Pi group. Mutations F481A, F482A, or F652A were introduced into 

these structures and further molecular dynamics simulation were done in the same 

way. Constant volume periodic boundaries were used with the box dimensions of 

134.7 Å. Then the structures were solvated by TIP3P water with 12 Å cut-off value. 

Finally, the system was mechanically minimized with parm03 parameters and 

equilibrated for 2ns at 300 K by SHAKE algorithm with 2 fs time steps in AMBER9 

program. Temperature control parameters were set up based on Berendsen's method. 

We determined the amplitude (δ) of the torsional mobility of the Φ, Ψ angles 

according to 

1
)( 2

−
−

= ∑
n

xx
δ   

, where x  is the actual torsion angle, x  the average of all the Φ or Ψ angles of the 

given residue, and n  the number of data points. The experiments were repeated three 

times and averaged, each based on 125 collected structures picked up at each 2 ps 

time point from 250 ps-long equilibrium phases. 

 

 

 
 



                                                                                  PhD Thesis – Bálint Kintses 

88 

 
Appendix figure 1. Schematic view of the 
temperature-jump/stopped-flow instrument. The 
colors indicate the temperature of the solution 
inside the instrument.   

Appendix 
 

Temperature-jump/stopped-flow 
 
The own-developed temperature-jump/stopped-flow apparatus allows us to study fast 

enzyme reactions at high temperatures, even above the denaturation temperature of 

the enzyme (42). The temperature-jump/stopped-flow apparatus is a redesigned 

conventional stopped-flow that is able to increase the temperature of the sample even 

by 60ºC on the submillisecond time scale during the mixing of the reactants. With this 

technique the kinetics of the enzyme reactions, which are faster than the denaturation 

process, can be investigated. In addition, it allows us to investigate the kinetics of 

many human enzymes at our 

physiological temperature which are 

instable in solution at 37 ˚C. 

Furthermore, it allows us to study 

the progress of heat-induced protein 

unfolding, which was impossible 

until now in case of fast denaturation 

processes.   

 

Principle of the temperature-
jump/stopped-flow 
 

In a stopped-flow instrument 

the progression of a reaction can be 

observed through an optical signal. 

The reactants are rapidly pushed 

from two syringes (A and B) into a 

small mixing chamber from which 

the reaction mixture flows into the 

observation cuvette. While the 

reaction mixture reaches the cuvette, 

the progression of the reaction 

cannot be detected typically for 0.5-
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1 ms, being the dead time of the instrument. In a conventional stopped-flow the 

syringes and the cuvette house are kept on the same temperature by a water circulator. 

In that case the applied experimental temperature range is limited by the temperature 

sensitivity of the reactants. The temperature-jump/stopped-flow apparatus oversteps 

this limitation. Appendix figure 1 shows the schematic view of the instrument. The 

enzyme (syringe A) and its substrate (syringe B) are stored at native temperature by 

using water bath temperature control. The temperature of the cuvette can be adjusted 

by an additional heating element in a wide temperature range (5-80 ˚C). Furthermore, 

a second heating element is inserted between the substrate syringe (syringe B) and the 

mixing chamber. This heating element is able to increase the temperature of the 

substrate solution even to a higher temperature than the temperature of the cuvette 

(note that the substrate must be non-heat-sensitive). Accordingly, when the reactants 

are pushed to the cuvette, a cold enzyme solution (syringe A) can be mixed with a 

high-temperature substrate solution (syringe B), resulting in an immediate temperature 

increase for the enzyme solution (temperature-jump). The temperature of the cuvette 

is adjusted to the temperature of the developing temperature of the reaction mixture, 

in order to keep the reaction mixture at a constant temperature during the reaction. 

Since the mixing of the reactant solutions yields the temperature jump, the dead time 

of the stopped-flow remains around 1 ms. 

 

The reaction of MW501+ and MgATP 
above the denaturation 
temperature of the myosin 
 

By the use of the 

temperature-jump/stopped-flow 

instrument, the reaction of MW501+ 

and MgATP was measured 

between 20 and 55 ˚C. The 

fluorescence increase has two 

phases at every temperature. The 

signal change lost in the dead time 

of the instrument was determined 

by measuring the fluorescence level of the apo MW501+ at each temperature. Thus the 

 
Appendix Figure 2. Temperature 
dependence of the amplitudes of the two phases 
of the MW501+ fluorescence enhancement upon 
the reaction with MgATP. The fast phase (■) is 
the recovery step, the slow phase (□) corresponds 
to the hydrolysis step. The measurement of the 
reaction at extreme temperatures was allowed by 
the temperature-jump/stopped-flow instrument.
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relative amplitude of the two phases can be determined (Appendix figure 2). The 

higher the temperature, the bigger the relative amplitude of the fast phase 

corresponding to the recovery step. This confirms the finding that the fluorescence 

increase of MW501+ has two phases at 20 ˚C. Consequently K3a was underestimated 

previously (58). 

 

 

 



                                                                                  PhD Thesis – Bálint Kintses 

91 

 

 

Appendix Figure 3. Ramachandran plots of the relay helix residues in the pre-recovery 
structures of MF481A,F482A and MF652A (black) compared to that of the wild type (red). The Φ, Ψ 
angles belong to 125 collected structures picked up at each 2 ps time point from the 250 ps-
long equilibrium phases of the molecular dynamic simulations.
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Tables 
 
Table 1. Kinetic data of nucleotide binding of  M239+ and M242+ 
Rate constants of nucleotide binding of MW239+ in the presence and absence of Mg2+ 

based on stopped-flow experiments. kon were determined from the slope of the initial 
linear part of the plots of kobs versus ligand concentration. kinduced fit are the maximum 
observed rate constants from the hyperbole fitting of the same plots. koff are 
determined from the intercepts of the initial linear part of the plots. 

MW239+ MW242+ Wild 
type* ligand 

 
rate constant 

 20 °C 12 °C 5 °C 5 °C 20 °C 
kon      (μM-1s-1) 1.4 - 0.87 2.1 0.66 MgATP kinduced fit     (s-1) 1100 - 450 400 - 
kon    (μM-1s-1) 3.9. 4.1 3.4 0.82 1.4 
kinduced fit     (s-1) >>1000 1000-1500 800 300 400 
koff                 (s-1) - 30 10 41 7.9 
KD               (μM) - 7.3 2.9 50 5.6 

MgADP 

Kiso,observed - 55 32 - - 
kon    (μM-1s-1) 12 - - - - 
kinduced fit     (s-1) >>1000 - - - - 
koff                 (s-1) 50 - - - - ADP 

KD               (μM) 4.2 - - - - 
* published in (58) 

 

 

 

Table 2. Elementally rate constants of switch 1 isomerization 

and that of the MgADP binding to MW239+.    

rate constant Data 
analysed 20oC 12oC 5oC 

kiso switch 1, forward   (s-1) 20 6 ≈1 
kiso switch 1, backward  (s-1) 29 18 12 
Kiso switch 1 

Mg2+ 
binding/ 

dissociation 0.7 0.3 ≈0.1 
kiso switch 1, forward   (s-1) - 23 3 
kiso switch 1, backward  (s-1) - 32 29 
k1on      (μM-1s-1) 3.8 3.5 3.3 
k2on      (μM-1s-1) 

MgADP 
binding 

2.7 0.57 ≈0.15 
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Table 3. Switch 1 fluorescence states assigned to structural states. 
Relative fluorescence 
intensities of Trp-239 Ligands bound to myosin Structural states Nomenclature 

High fluorescence (*M):   
113% (360 nm *) Actin and/or MgADP 1W7I 

-Weak ADP-        
bound state 
-Open switch 1 

Intermediate 
fluorescence (M): 100% 

(350 nm) 
None (Apo state) 1W8J, 1Q5G Apo 

Low fluorescence (†M): 
63% (340 nm) 

-Nucleotides or analog in 
which the γ-phosphate site 
is occupied (ATP, ADP.Pi, 
AMP.PNP ) 
- MgADP 

1W7J, 1MMA, 
1MMD, 1MMG, 
1MMN, 1MND, 
1MNE, 1VOM 

-Closed switch 
1 

Lowest fluorescence 
(††M): 55% (349 nm) Mg2+-free ADP   

 

 

 

 

Table 4 Stern-Volmer constants of the acrylamide quenching experiments of 3μM 
MW501+, MF481A,F482A, and MF652A. They were titrated with up to 0.4 M acrylamide in the 
absence and presence of different nucleotides at 20 °C (Supplemental Figure 2). In MW501+ the 
difference in the Stern-Volmer constants of the up (MgADP.AlF4) and the down (MgADP) 
lever arm states is significantly larger than the mutants’. 
 

 Stern-Volmer constant (M-1) 

Nucleotide MW501+ MF481A,F482A MF652A 

none 4.11 ± 0.09 4.10 ± 0.08 3.77 ± 0.08 

ADP 3.73 ± 0.07 3.70 ± 0.08 3.34 ± 0.12 

ATP 3.20 ± 0.08 3.74 ± 0.08 3.26 ± 0.10 

ADP.AlF4 2.98 ± 0.04 3.58 ± 0.07 3.15 ± 0.07 
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Table 5 Rate constants and equilibrium constants of some reaction steps in Scheme 1 of 
MW501+, MF481A,F482A, and MF652A. K3a=M*.ATP/M†.ATP and K3b=M*.ADP.Pi/M*.ATP were 
calculated from the amplitude of the Pi burst (apparentKhydrolysis=M*.ADP.Pi/(M†.ATP+M*.ATP)) 
and the amplitude of the fluorescence enhancement upon ATP binding (apparentKrecovery 

step=(M*.ATP+M*.ADP.Pi)/M†ATP and M*.ATP=M*(total)-M*.ADP.Pi). All parameters were 
measured at 20 °C, otherwise stated.  
 

Parameters of Scheme 1 Nucleotide MW501+ MF481A,F482A MF652A 

K1k+2 (μM-1s-1) MgADP 1.50 0.33 0.30 

k+6 (s-1) Mg mant-ADP 3.5 0.36 0.4 

K1k+2 (μM-1s-1) (6 °C) 0.80 0.15 0.13 

k+2 (s-1) (6 °C) 400 170 126 

appKrecovery step 5.25 0.27 0.14 

appKhydrolysis 0.43 0.11 0.05 

K3a (recovery step) 2.7 0.14 0.09 

K3b (hydrolysis) 0.55 0.91 0.66 

kobserved hydrolysis (s-1) 25.0 5.3 2.2 

k4+ (s-1) 

MgATP 

0.05 0.14 0.07 

 
 

 

 

Table 6 Kinetic and thermodynamic parameters of the actin-myosin interaction and actin 
activation of MW501+, MF481A,F482A, and MF652A. Data signed with * are published in (28). 

experiment parameter MW501+ MF481A,F482A MF652A 
K1k+2 (μM-1s-1) of ATP 0.18 1.3 1.5 ATP induced actin-

myosin dissociation kmax (s-1) 121 600 700 
k+A (μM-1s-1) 1.60 ± 0.04* 0.41 ± 0.05 0.61 ± 0.04 

k-A (s-1) 0.047 ± 0.002* 0.14 ± 0.01 0.1 ± 0.03 
Kd,A (μM) 0.03* 0.34 0.16 

k+DA (M-1s-1) 0.22 ± 0.02* 0.07 ± 0.002 0.12 ± 
k-DA (s-1) 0.027 ± 0.002* 0.11 ± 0.003 0.108 ± 0.008 

Actin binding 

Kd,DA (μM) 0.12* 1.57 0.90 
vmax (s-1) 3.8 1.2 1.2 Actin-activated 

ATP-ase activity KM (μM) 67 61 98 
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Table 7. 

Table 7 Rate constants and equilibrium constants of some reaction steps in Scheme 1 of 
MW501+ and MY573F.K3a=M*.ATP/M†.ATP and K3b=M*.ADP.Pi/M*.ATP were calculated 
from the amplitude of the Pi burst (apparentKhydrolysis=M*.ADP.Pi/(M†.ATP+M*.ATP)) and the 
amplitude of the fluorescence enhancement upon ATP binding (apparentKrecovery 

step=(M*.ATP+M*.ADP.Pi)/M†ATP and M*.ATP=M*(total)-M*.ADP.Pi). All parameters were 
measured at 20 °C.  
 

Parameters of Scheme 1 Nucleotide MW501+ MY573F 

K1k+2 (μM-1s-1) 1.50 1.7 

k+6 (s-1) 
MgADP 

5 2.5 

appKrecovery step  5.25 0.68 

appKhydrolysis  0.43 0.4 

K3a (recovery step)  2.7 <0.1 

K3b (hydrolysis)  0.55 >5.7 

kobserved hydrolysis (s-1)  25.0 6 

k4+ (s-1)  0.05 0.28 
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Abbreviations 
 

A   actin 

Ala, A  alanine amino acid 

Asn, N  asparagine amino acid 

Arg, R  arginine amino acid 

ATP-ase adenosine 5’ triphosphatase 

EDTA  ethylene diamine tetraacetic acid 

EGTA  ethylene glycol tetraacetic acid 

Glu, E  glutamate amino acid 

GPCRs     G-protein-coupled receptors 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

M  myosin 

MgADP magnesium adenosine 5’ diphosphate 

MgADP.Pi magnesium adenosine 5’ diphosphate and inorganic phosphate 

MgATP magnesium adenosine 5’ triphosphate 

MgGDP magnesium guanosine 5’ diphosphate 

MgGTP magnesium guanosine 5’ triphosphate 

mant-  N-methyl anthraniloyl 

NADH  nicotin amide adenine dinucleotide 

NTP-ase nucleoside triphosphatase 

obs  observed   

Pi  inorganic phosphate group 

PEP  phosphoenol pyruvate 

Phe, F  phenylalanine amino acid 

PK/LDH pyruvate kinase / lactate dehydrogenase 

Tyr, Y  tyrosine 

Trp, W  tryptophan 

 
 
 
 
 
 



                                                                                  PhD Thesis – Bálint Kintses 

97 

References 
 
 
 1.  Bagshaw, C. R., J. F. Eccleston, F. Eckstein, R. S. Goody, H. Gutfreund, and 

D. R. Trentham. 1974. The magnesium ion-dependent adenosine 
triphosphatase of myosin. Two-step processes of adenosine triphosphate 
association and adenosine diphosphate dissociation. Biochem. J. 141: 351-364. 

 2.  Bagshaw, C. R., and D. R. Trentham. 1974. The characterization of myosin-
product complexes and of product-release steps during the magnesium ion-
dependent adenosine triphosphatase reaction. Biochem. J. 141: 331-349. 

 3.  Baker, J. P., and M. A. Titus. 1998. Myosins: matching functions with motors. 
Curr. Opin. Cell Biol. 10: 80-86. 

 4.  Balint, M., F. A. Sreter, I. Wolf, B. Nagy, and J. GERGELY. 1975. The 
substructure of heavy meromyosin. The effect of Ca2+ and Mg2+ on the 
tryptic fragmentation of heavy meromyosin. J. Biol. Chem. 250: 6168-6177. 

 5.  Banga I., Erdõs T., Gerendás M, Mommaerts W.F.H.M., Straub F.B., and 
Szent-Györgyi A. 1941. Myosin and Muscular Contraction. 

 6.  Bauer, C. B., H. M. Holden, J. B. Thoden, R. Smith, and I. Rayment. 2000. X-
ray structures of the apo and MgATP-bound states of Dictyostelium 
discoideum myosin motor domain. J. Biol. Chem. 275: 38494-38499. 

 7.  Choi, I. G., and S. H. Kim. 2006. Evolution of protein structural classes and 
protein sequence families. Proc. Natl. Acad. Sci. U. S. A 103: 14056-14061. 

 8.  Collins, F. S., and A. D. Barker. 2007. Mapping the cancer genome. 
Pinpointing the genes involved in cancer will help chart a new course across 
the complex landscape of human malignancies. Sci. Am. 296: 50-57. 

 9.  Conibear, P. B., C. R. Bagshaw, P. G. Fajer, M. Kovacs, and A. Malnasi-
Csizmadia. 2003. Myosin cleft movement and its coupling to actomyosin 
dissociation. Nat. Struct. Biol. 10: 831-835. 

 10.  Conibear, P. B., A. Malnasi-Csizmadia, and C. R. Bagshaw. 2004. The effect 
of F-actin on the relay helix position of myosin II, as revealed by tryptophan 
fluorescence, and its implications for mechanochemical coupling. 
Biochemistry 43: 15404-15417. 

 11.  Cooper, J. A., S. B. Walker, and T. D. Pollard. 1983. Pyrene actin: 
documentation of the validity of a sensitive assay for actin polymerization. J. 
Muscle Res. Cell Motil. 4: 253-262. 

 12.  Coureux, P. D., H. L. Sweeney, and A. Houdusse. 2004. Three myosin V 
structures delineate essential features of chemo-mechanical transduction. 
EMBO J. 23: 4527-4537. 



                                                                                  PhD Thesis – Bálint Kintses 

98 

 13.  Coureux, P. D., A. L. Wells, J. Menetrey, C. M. Yengo, C. A. Morris, H. L. 
Sweeney, and A. Houdusse. 2003. A structural state of the myosin V motor 
without bound nucleotide. Nature 425: 419-423. 

 14.  Cremo, C. R., and M. A. Geeves. 1998. Interaction of actin and ADP with the 
head domain of smooth muscle myosin: implications for strain-dependent 
ADP release in smooth muscle. Biochemistry 37: 1969-1978. 

 15.  Davis, J. S., and N. D. Epstein. 2007. Mechanism of tension generation in 
muscle: an analysis of the forward and reverse rate constants. Biophys. J 92: 
2865-2874. 

 16.  Fischer, S., B. Windshugel, D. Horak, K. C. Holmes, and J. C. Smith. 2005. 
Structural mechanism of the recovery stroke in the myosin molecular motor. 
Proc. Natl. Acad. Sci. U. S. A 102: 6873-6878. 

 17.  Fisher, A. J., C. A. Smith, J. B. Thoden, R. Smith, K. Sutoh, H. M. Holden, 
and I. Rayment. 1995. X-ray structures of the myosin motor domain of 
Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. 
Biochemistry 34: 8960-8972. 

 18.  Geeves, M. A., R. Fedorov, and D. J. Manstein. 2005. Molecular mechanism 
of actomyosin-based motility. Cell Mol. Life Sci. 62: 1462-1477. 

 19.  Geeves, M. A., R. S. Goody, and H. Gutfreund. 1984. Kinetics of acto-S1 
interaction as a guide to a model for the crossbridge cycle. J Muscle Res. Cell 
Motil. 5: 351-361. 

 20.  Geeves, M. A., and K. C. Holmes. 1999. Structural mechanism of muscle 
contraction. Annu. Rev. Biochem. 68: 687-728. 

 21.  Geeves, M. A., and K. C. Holmes. 1999. Structural mechanism of muscle 
contraction. Annu. Rev. Biochem. 68: 687-728. 

 22.  Geeves, M. A., and K. C. Holmes. 2005. The molecular mechanism of muscle 
contraction. Adv. Protein Chem. 71: 161-193. 

 23.  GERGELY, J., M. A. GOUVEA, and D. KARIBIAN. 1955. Fragmentation of 
myosin by chymotrypsin. J. Biol. Chem. 212: 165-177. 

 24.  Geyer, M., T. Schweins, C. Herrmann, T. Prisner, A. Wittinghofer, and H. R. 
Kalbitzer. 1996. Conformational transitions in p21ras and in its complexes 
with the effector protein Raf-RBD and the GTPase activating protein GAP. 
Biochemistry 35: 10308-10320. 

 25.  Goody, R. S., and W. Hofmann-Goody. 2002. Exchange factors, effectors, 
GAPs and motor proteins: common thermodynamic and kinetic principles for 
different functions. Eur. Biophys. J 31: 268-274. 

 26.  Gulick, A. M., C. B. Bauer, J. B. Thoden, and I. Rayment. 1997. X-ray 
structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of 



                                                                                  PhD Thesis – Bálint Kintses 

99 

the Dictyostelium discoideum myosin motor domain. Biochemistry 36: 11619-
11628. 

 27.  Gyimesi, M., B. Kintses, A. Bodor, A. Perczel, S. Fischer, C. R. Bagshaw, and 
A. Malnasi-Csizmadia. 2008. The mechanism of the reverse recovery-step, 
phosphate release, and actin activation of Dictyostelium myosin II. J. Biol. 
Chem.  

 28.  Gyimesi, M., A. K. Tsaturyan, M. S. Kellermayer, and A. Malnasi-Csizmadia. 
2008. Kinetic characterization of the function of myosin loop 4 in the actin-
myosin interaction. Biochemistry 47: 283-291. 

 29.  Hannemann, D. E., W. Cao, A. O. Olivares, J. P. Robblee, and E. M. De La 
Cruz. 2005. Magnesium, ADP, and actin binding linkage of myosin V: 
evidence for multiple myosin V-ADP and actomyosin V-ADP states. 
Biochemistry 44: 8826-8840. 

 30.  Harris, M. J., and H. J. Woo. 2008. Energetics of subdomain movements and 
fluorescence probe solvation environment change in ATP-bound myosin. Eur. 
Biophys. J.  

 31.  Ho, B. K., A. Thomas, and R. Brasseur. 2003. Revisiting the Ramachandran 
plot: hard-sphere repulsion, electrostatics, and H-bonding in the alpha-helix. 
Protein Sci. 12: 2508-2522. 

 32.  Holmes, K. C. 1997. The swinging lever-arm hypothesis of muscle 
contraction. Curr. Biol. 7: R112-R118. 

 33.  Holmes, K. C., I. Angert, F. J. Kull, W. Jahn, and R. R. Schroder. 2003. 
Electron cryo-microscopy shows how strong binding of myosin to actin 
releases nucleotide. Nature 425: 423-427. 

 34.  Holmes, K. C., and M. A. Geeves. 2000. The structural basis of muscle 
contraction. Philos. Trans. R. Soc. Lond B Biol. Sci. 355: 419-431. 

 35.  Holmes, K. C., and R. R. Schroder. 2003. Switch 1 opens on strong binding to 
actin. Molecular and cellular aspects of muscle contraction. Adv. Exp. Med. 
Biol. 538: 159-166. 

 36.  Holmes, K. C., R. R. Schroder, H. L. Sweeney, and A. Houdusse. 2004. The 
structure of the rigor complex and its implications for the power stroke. Philos. 
Trans. R. Soc. Lond B Biol. Sci. 359: 1819-1828. 

 37.  Houdusse, A., and H. L. Sweeney. 2001. Myosin motors: missing structures 
and hidden springs. Curr. Opin. Struct. Biol 11: 182-194. 

 38.  Huxley, H. E. 1969. The mechanism of muscular contraction. Science 164: 
1356-1365. 

 39.  Irving, M., V. Lombardi, G. Piazzesi, and M. A. Ferenczi. 1992. Myosin head 
movements are synchronous with the elementary force-generating process in 
muscle. Nature 357: 156-158. 



                                                                                  PhD Thesis – Bálint Kintses 

100 

 40.  Itzen, A., O. Pylypenko, R. S. Goody, K. Alexandrov, and A. Rak. 2006. 
Nucleotide exchange via local protein unfolding--structure of Rab8 in complex 
with MSS4. EMBO J 25: 1445-1455. 

 41.  Kintses, B., M. Gyimesi, D. S. Pearson, M. A. Geeves, W. Zeng, C. R. 
Bagshaw, and A. Malnasi-Csizmadia. 2007. Reversible movement of switch 1 
loop of myosin determines actin interaction. EMBO J. 26: 265-274. 

 42.  Kintses, B., Z. Simon, M. Gyimesi, J. Toth, B. Jelinek, C. Niedetzky, M. 
Kovacs, and A. Malnasi-Csizmadia. 2006. Enzyme kinetics above 
denaturation temperature: a temperature-jump/stopped-flow apparatus. 
Biophys. J. 91: 4605-4610. 

 43.  Kintses, B., Z. Yang, and A. Malnasi-Csizmadia. 2008. Experimental 
investigation of the seesaw mechanism of the relay region that moves the 
myosin lever arm. J Biol Chem.  

 44.  Klebe, C., H. Prinz, A. Wittinghofer, and R. S. Goody. 1995. The kinetic 
mechanism of Ran--nucleotide exchange catalyzed by RCC1. Biochemistry 
34: 12543-12552. 

 45.  Kojima, S., K. Konishi, K. Katoh, K. Fujiwara, H. M. Martinez, M. F. 
Morales, and H. Onishi. 2001. Functional roles of ionic and hydrophobic 
surface loops in smooth muscle myosin: their interactions with actin. 
Biochemistry 40: 657-664. 

 46.  Koppole, S., J. C. Smith, and S. Fischer. 2006. Simulations of the myosin II 
motor reveal a nucleotide-state sensing element that controls the recovery 
stroke. J. Mol. Biol. 361: 604-616. 

 47.  Koppole, S., J. C. Smith, and S. Fischer. 2007. The structural coupling 
between ATPase activation and recovery stroke in the myosin II motor. 
Structure. 15: 825-837. 

 48.  Koshland, D. E. 1958. Application of a Theory of Enzyme Specificity to 
Protein Synthesis. Proc. Natl. Acad. Sci. U. S. A 44: 98-104. 

 49.  Kull, F. J., R. D. Vale, and R. J. Fletterick. 1998. The case for a common 
ancestor: kinesin and myosin motor proteins and G proteins. J Muscle Res. 
Cell Motil. 19: 877-886. 

 50.  Kumar, S., B. Ma, C. J. Tsai, N. Sinha, and R. Nussinov. 2000. Folding and 
binding cascades: dynamic landscapes and population shifts. Protein Sci. 9: 
10-19. 

 51.  Kurzawa, S. E., D. J. Manstein, and M. A. Geeves. 1997. Dictyostelium 
discoideum myosin II: characterization of functional myosin motor fragments. 
Biochemistry 36: 317-323. 

 52.  Leipe, D. D., Y. I. Wolf, E. V. Koonin, and L. Aravind. 2002. Classification 
and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317: 41-
72. 



                                                                                  PhD Thesis – Bálint Kintses 

101 

 53.  Lombardi, V., G. Piazzesi, M. A. Ferenczi, H. Thirlwell, I. Dobbie, and M. 
Irving. 1995. Elastic distortion of myosin heads and repriming of the working 
stroke in muscle. Nature 374: 553-555. 

 54.  Lymn, R. W., and E. W. Taylor. 1971. Mechanism of adenosine triphosphate 
hydrolysis by actomyosin. Biochemistry 10: 4617-4624. 

 55.  Malnasi-Csizmadia, A., J. L. Dickens, W. Zeng, and C. R. Bagshaw. 2005. 
Switch movements and the myosin crossbridge stroke. J. Muscle Res. Cell 
Motil.  1-7. 

 56.  Malnasi-Csizmadia, A., D. S. Pearson, M. Kovacs, R. J. Woolley, M. A. 
Geeves, and C. R. Bagshaw. 2001. Kinetic resolution of a conformational 
transition and the ATP hydrolysis step using relaxation methods with a 
Dictyostelium myosin II mutant containing a single tryptophan residue. 
Biochemistry 40: 12727-12737. 

 57.  Malnasi-Csizmadia, A., J. Toth, D. S. Pearson, C. Hetenyi, L. Nyitray, M. A. 
Geeves, C. R. Bagshaw, and M. Kovacs. 2007. Selective perturbation of the 
myosin recovery stroke by point mutations at the base of the lever arm affects 
ATP hydrolysis and phosphate release. J. Biol. Chem. 282: 17658-17664. 

 58.  Malnasi-Csizmadia, A., R. J. Woolley, and C. R. Bagshaw. 2000. Resolution 
of conformational states of Dictyostelium myosin II motor domain using 
tryptophan (W501) mutants: implications for the open-closed transition 
identified by crystallography. Biochemistry 39: 16135-16146. 

 59.  Manstein, D. J., K. M. Ruppel, and J.A. Spudich. 1989. Expression and 
characterization of a functional myosin head fragment in Dictyostelium 
discoideum. Science 246: 656-658. 

 60.  Manstein, D. J., H. P. Schuster, P. Morandini, and D. M. Hunt. 1995. Cloning 
vectors for the production of proteins in Dictyostelium discoideum. Gene 162: 
129-134. 

 61.  Mermall, V., P. L. Post, and M. S. Mooseker. 1998. Unconventional myosins 
in cell movement, membrane traffic, and signal transduction. Science 279: 
527-533. 

 62.  Mesentean, S., S. Koppole, J. C. Smith, and S. Fischer. 2007. The principal 
motions involved in the coupling mechanism of the recovery stroke of the 
myosin motor. J. Mol. Biol. 367: 591-602. 

 63.  Miller, C. J., W. W. Wong, E. Bobkova, P. A. Rubenstein, and E. Reisler. 
1996. Mutational analysis of the role of the N terminus of actin in actomyosin 
interactions. Comparison with other mutant actins and implications for the 
cross-bridge cycle. Biochemistry 35: 16557-16565. 

 64.  Monod, J., J. WYMAN, and J. P. CHANGEUX. 1965. ON THE NATURE OF 
ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J. Mol. Biol. 12: 
88-118. 



                                                                                  PhD Thesis – Bálint Kintses 

102 

 65.  Naber, N., T. J. Minehardt, S. Rice, X. Chen, J. Grammer, M. Matuska, R. D. 
Vale, P. A. Kollman, R. Car, R. G. Yount, R. Cooke, and E. Pate. 2003. 
Closing of the nucleotide pocket of kinesin-family motors upon binding to 
microtubules. Science 300: 798-801. 

 66.  Najmoutin GA, and et al. 2005. Heterotrimeric G-protein alpha-subunit adopts 
a "preactivated" conformation when associated with betagamma-subunits. 
38071-38080. 

 67.  Onishi, H., S. V. Mikhailenko, and M. F. Morales. 2006. Toward 
understanding actin activation of myosin ATPase: the role of myosin surface 
loops. Proc. Natl. Acad. Sci. U. S. A 103: 6136-6141. 

 68.  Onishi, H., and M. F. Morales. 2007. A closer look at energy transduction in 
muscle. Proc. Natl. Acad. Sci. U. S. A 104: 12714-12719. 

 69.  Ranatunga, K. W., M. E. Coupland, and G. Mutungi. 2002. An asymmetry in 
the phosphate dependence of tension transients induced by length perturbation 
in mammalian (rabbit psoas) muscle fibres. J Physiol 542: 899-910. 

 70.  Rayment, I., W. R. Rypniewski, K. Schmidt-Base, R. Smith, D. R. Tomchick, 
M. M. Benning, D. A. Winkelmann, G. Wesenberg, and H. M. Holden. 1993. 
Three-dimensional structure of myosin subfragment-1: a molecular motor. 
Science 261: 50-58. 

 71.  Reubold, T. F., S. Eschenburg, A. Becker, F. J. Kull, and D. J. Manstein. 2003. 
A structural model for actin-induced nucleotide release in myosin. Nat. Struct. 
Biol. 10: 826-830. 

 72.  Rosenfeld, S. S., A. Houdusse, and H. L. Sweeney. 2005. Magnesium 
regulates ADP dissociation from myosin V. J. Biol. Chem. 280: 6072-6079. 

 73.  Siththanandan, V. B., J. L. Donnelly, and M. A. Ferenczi. 2006. Effect of 
strain on actomyosin kinetics in isometric muscle fibers. Biophys. J 90: 3653-
3665. 

 74.  Sleep, J., M. Irving, and K. Burton. 2005. The ATP hydrolysis and phosphate 
release steps control the time course of force development in rabbit skeletal 
muscle. J Physiol 563: 671-687. 

 75.  Smith, C. A., and I. Rayment. 1996. X-ray structure of the 
magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum 
myosin motor domain to 1.9 A resolution. Biochemistry 35: 5404-5417. 

 76.  Smith, D. A., M. A. Geeves, J. Sleep, and S. M. Mijailovich. 2008. Towards a 
unified theory of muscle contraction. I: foundations. Ann. Biomed. Eng 36: 
1624-1640. 

 77.  Smith, D. A., and J. Sleep. 2004. Mechanokinetics of rapid tension recovery in 
muscle: the Myosin working stroke is followed by a slower release of 
phosphate. Biophys. J 87: 442-456. 



                                                                                  PhD Thesis – Bálint Kintses 

103 

 78.  Spoerner, M., T. Graf, B. Konig, and H. R. Kalbitzer. 2005. A novel 
mechanism for the modulation of the Ras-effector interaction by small 
molecules. Biochem. Biophys. Res. Commun. 334: 709-713. 

 79.  Spoerner, M., C. Herrmann, I. R. Vetter, H. R. Kalbitzer, and A. Wittinghofer. 
2001. Dynamic properties of the Ras switch I region and its importance for 
binding to effectors. Proc. Natl. Acad. Sci. U. S. A 98: 4944-4949. 

 80.  Spoerner, M., A. Nuehs, C. Herrmann, G. Steiner, and H. R. Kalbitzer. 2007. 
Slow conformational dynamics of the guanine nucleotide-binding protein Ras 
complexed with the GTP analogue GTPgammaS. FEBS J 274: 1419-1433. 

 81.  Spudich, J. A. 2001. The myosin swinging cross-bridge model. Nat. Rev. Mol. 
Cell Biol 2: 387-392. 

 82.  Spudich, J. A., and S. Watt. 1971. The regulation of rabbit skeletal muscle 
contraction. I. Biochemical studies of the interaction of the tropomyosin-
troponin complex with actin and the proteolytic fragments of myosin. J. Biol. 
Chem. 246: 4866-4871. 

 83.  Sweeney, H. L., and A. Houdusse. 2004. The motor mechanism of myosin V: 
insights for muscle contraction. Philos. Trans. R. Soc. Lond B Biol Sci. 359: 
1829-1841. 

 84.  Szent-Gyorgyi, A. G. 2004. The early history of the biochemistry of muscle 
contraction. J. Gen. Physiol 123: 631-641. 

 85.  Takagi, Y., H. Shuman, and Y. E. Goldman. 2004. Coupling between 
phosphate release and force generation in muscle actomyosin. Philos. Trans. 
R. Soc. Lond B Biol Sci. 359: 1913-1920. 

 86.  Toth, J., B. Varga, M. Kovacs, A. Malnasi-Csizmadia, and B. G. Vertessy. 
2007. Kinetic mechanism of human dUTPase, an essential nucleotide 
pyrophosphatase enzyme. J. Biol. Chem. 282: 33572-33582. 

 87.  Weijland, A., and A. Parmeggiani. 1993. Toward a model for the interaction 
between elongation factor Tu and the ribosome. Science 259: 1311-1314. 

 88.  Ye, M., F. Shima, S. Muraoka, J. Liao, H. Okamoto, M. Yamamoto, A. 
Tamura, N. Yagi, T. Ueki, and T. Kataoka. 2005. Crystal structure of M-Ras 
reveals a GTP-bound "off" state conformation of Ras family small GTPases. J 
Biol Chem. 280: 31267-31275. 

 89.  Yu, H., L. Ma, Y. Yang, and Q. Cui. 2007. Mechanochemical coupling in the 
myosin motor domain. I. Insights from equilibrium active-site simulations. 
PLoS. Comput. Biol. 3: e21. 

 90.  Yu, H., L. Ma, Y. Yang, and Q. Cui. 2007. Mechanochemical coupling in the 
myosin motor domain. II. Analysis of critical residues. PLoS. Comput. Biol. 3: 
e23. 



                                                                                  PhD Thesis – Bálint Kintses 

104 

 91.  Zeng, W., P. B. Conibear, J. L. Dickens, R. A. Cowie, S. Wakelin, A. Malnasi-
Csizmadia, and C. R. Bagshaw. 2004. Dynamics of actomyosin interactions in 
relation to the cross-bridge cycle. Philos. Trans. R. Soc. Lond B Biol. Sci. 359: 
1843-1855. 

 

 


	cimlap.pdf
	thesis_final

